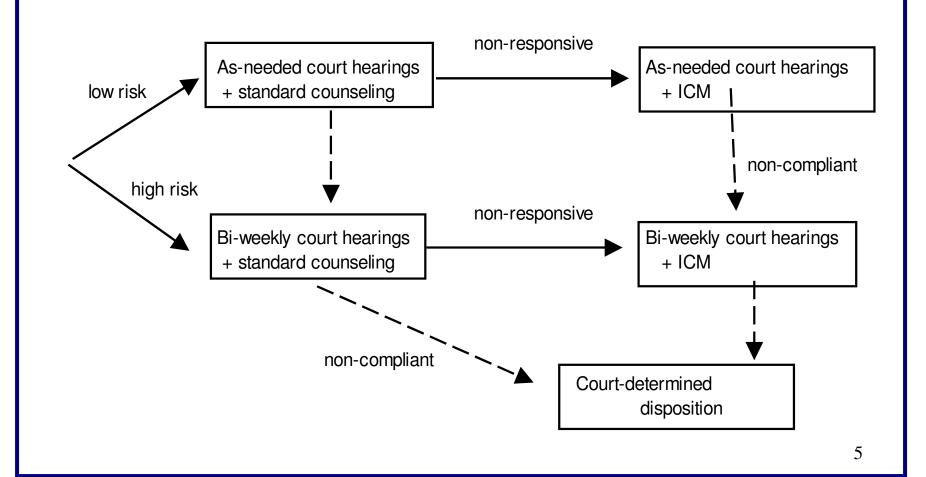
Getting SMART about Adapting Interventions

S.A. Murphy
Early Childhood Interventions
Inaugural Conference 04/21/12

Adaptive Interventions are individually tailored sequences of interventions, with treatment type and dosage changing according to patient outcomes.

Operationalizes many interventions in practice.

- •Brooner et al. (2002, 2007) Treatment of Opioid Addiction
- •McKay (2009) Treatment of Substance Use Disorders
- •Marlowe et al. (2008, 2011) Drug Court
- •Rush et al. (2003) Treatment of Depression


Why Adaptive Interventions?

- High heterogeneity in response to any one treatment
 - What works for one person may not work for another
 - What works now for a person may not work later (and relapse is common)
- Lack of adherence or excessive burden is common
- Intervals during which more intense treatment is required alternate with intervals in which less treatment is sufficient

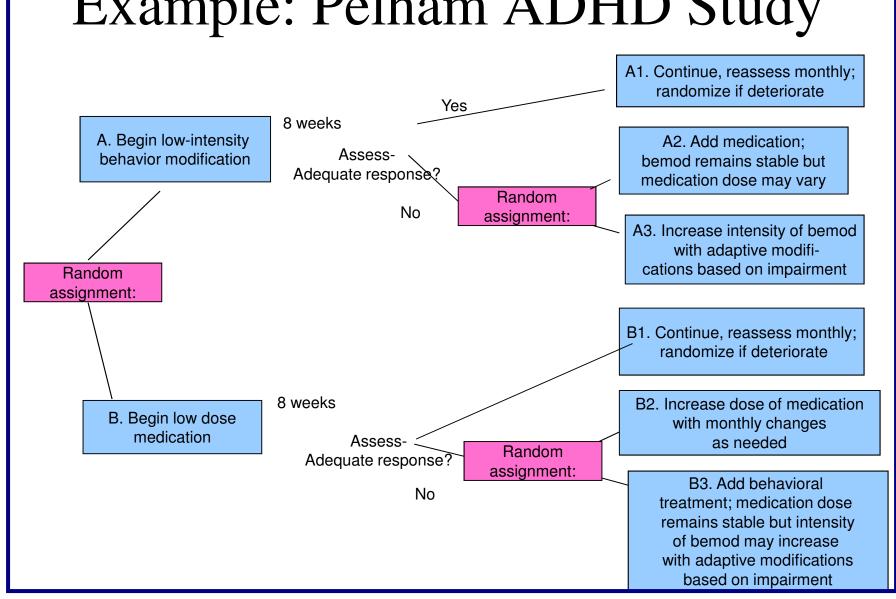
Example of an Adaptive Intervention

- •Adaptive Drug Court Program for drug abusing offenders.
- •Goal is to minimize recidivism and drug use.
- •Marlowe et al. (2008, 2011)

Adaptive Drug Court Program

Some Critical Decisions

- •What is the best sequencing of treatments?
- •What is the best timings of alterations in treatments?
- •What information do we use to make these decisions? (how do we individualize the sequence of treatments?)


SMART Studies

What is a sequential, multiple assignment, randomized trial (SMART)?

These are multi-stage trials; each stage corresponds to a critical clinical decision and a randomization takes place at each critical decision.

Goal of trial is to inform the construction of adaptive interventions.

Example: Pelham ADHD Study

SMART Design Principles

- •KEEP IT SIMPLE: At each stage (critical decision point), restrict class of treatments only by ethical, feasibility or strong scientific considerations. Use a low dimension summary (responder status) instead of all intermediate outcomes (adherence, etc.) to restrict class of next treatments.
- •Collect intermediate outcomes that might be useful in ascertaining for whom each treatment works best (adherence, etc.); information that might be used to individualize subsequent treatment.

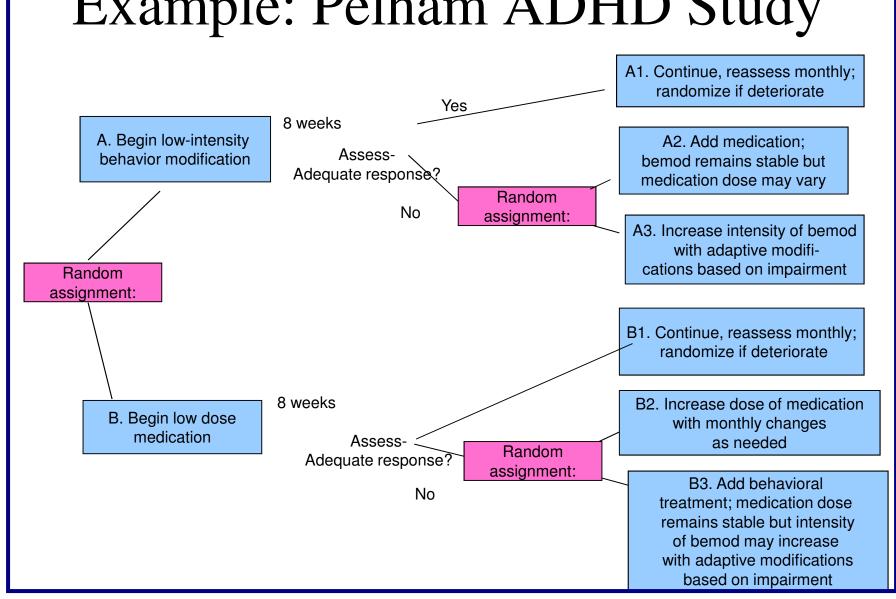
SMART Design Principles

- •Choose primary hypotheses that are both scientifically important and aid in developing the adaptive intervention.
 - •Power trial to address these hypotheses.

•Conduct secondary analyses that further develop the adaptive intervention and that use the randomization to eliminate confounding.

SMART Designing Principles: Sample Size Formula

- •EXAMPLE 1: (sample size is highly constrained): Hypothesize that beginning with low dose BMOD results in better classroom behavior than beginning with low dose MED. Sample size formula is same as for a two group comparison.
- •EXAMPLE 2: (sample size is less constrained): Hypothesize that among non-responders, augmenting current treatment results in better classroom behavior than an intensification of current treatment. Sample size formula is same as a two group comparison of non-responders.


Examples of "SMART" designs:

- •CATIE (2001) Treatment of Psychosis in Schizophrenia
- Pelham (primary analysis) Treatment of ADHD
- •Oslin (primary analysis) Treatment of Alcohol Dependence
- •Jones (in field) Treatment for Pregnant Women who are Drug Dependent
- •Kasari (in field) Treatment of Children with Autism
- •McKay (in field) Treatment of Alcohol and Cocaine Dependence

Exploring Greater Treatment Individualization via Q-Learning

- Q-Learning is an extension of regression to sequential treatments.
- This regression results in a proposal for a more deeply tailored adaptive intervention.
- A subsequent trial would evaluate the proposed adaptive intervention.

Example: Pelham ADHD Study

Q-Learning using data on children with ADHD

- Stage 1 data: (X_1, A_1, R_1)
 - $-R_1=1$ if responder; =0 if non-responder
 - $-A_1 = 1$ if BMOD, $A_1 = -1$ if MED
 - $-X_I$ includes baseline school performance, (Y_0) and prior medication (S_I)
 - $S_1 = 1$ if prior use of medication; =0, if not.
- Stage 1 involves all children

Q-Learning using data on children with ADHD

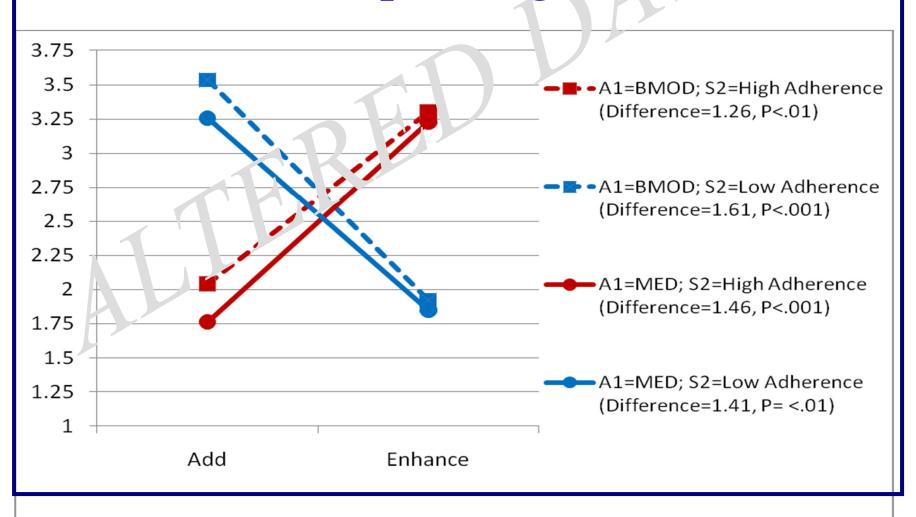
- Stage 2 data: (X_2, A_2, Y)
 - -Y =end of year school performance
 - $-A_2=1$ if Enhance, $A_2=-1$ if Augment
 - $-X_2$ includes the month of non-response, (M_2) and a measure of adherence in stage 1 (S_2)
 - $S_2 = 1$ if adherent in stage 1; =0, if non-adherent
- Stage 2 involves only children who do not respond in Stage 1 (R_1 =0).

Q-Learning for SMART Studies

- Conduct the regressions in backwards order! E.g. Stage 2 first, then Stage 1.
- Why?
 - Stage 1 dependent variable must control for Stage 2 treatment.
 - Stage 1 dependent variable is a predictor of Y under optimal treatment in stage 2.
 - Stage 2 analysis is used to construct the predictor of Y, e.g. \hat{Y}

Stage 2 Regression for Non-responding Children

- Dependent Variable: *Y* (end of school year performance)
- Treatment: $A_2=1$ if Enhance, $A_2=-1$ if Augment
- Interactions with Treatment, A_2 : stage 1 treatment (A_1) and adherence (S_2)
- Controls: baseline school performance, (Y_0) and baseline prior medication (S_1) , month of non-response (M_2)


Q-Learning using data on children with ADHD

• Stage 2 regression for *Y*:

$$(1, Y_0, S_1, A_1, M_2, S_2)\alpha_2 + A_2(\beta_{21} + A_1\beta_{22} + S_2\beta_{23})$$

• Interesting Stage 2 contrast: Does the best stage 2 tactic (enhance versus augment) differ by whether the child/family is adherent?

Stage 2 Regression for Non-responding Chilcren

Stage 1 Regression for All Children

- Dependent Variable: \hat{Y} (predicted end of school year performance under optimal stage 2 treatment)
- Treatment: $A_1=1$ if BEMOD, $A_1=-1$ if MED
- Interactions with Treatment, A_1 : prior medication (S_1)
- Control: baseline school performance, (Y_0)

Dependent Variable for Stage 1 Regression

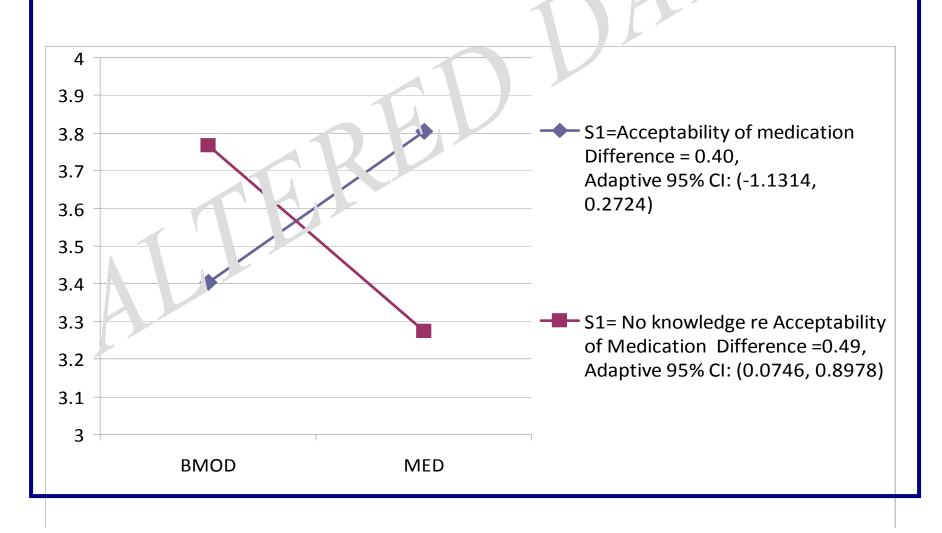
• Stage 2 regression for *Y*:

$$(1, Y_0, S_1, A_1, M_2, S_2)\alpha_2 + A_2(\beta_{21} + A_1\beta_{22} + S_2\beta_{23})$$

• Stage 1 dependent variable:

$$R_1Y + (1 - R_1)\hat{Y}$$

$$\hat{Y} = (1, Y_0, S_1, A_1, M_2, S_2)\hat{\alpha}_2 + |\hat{\beta}_{21} + A_1\hat{\beta}_{22} + S_2\hat{\beta}_{23}|$$


Q-Learning using data on children with ADHD

• Stage 1 regression for \hat{Y} :

$$(1, Y_0, S_1)\alpha_1 + A_1(\beta_{11} + S_1\beta_{12})$$

• Interesting stage 1 contrast: does the best initial treatment differ by whether a child received medication in the prior year for ADHD?

Stage 1 Regression for All Children

Adaptive Intervention Proposal

IF medication has not been used in the prior year THEN begin with BMOD;

ELSE select either BMOD or MED.

IF the child is nonresponsive and was non-adherent, THEN augment present treatment;

ELSE IF the child is nonresponse and was adherent, THEN intensify current treatment.

Discussion

Confidence Intervals have been developed!

• Software in R for Q-Learning out and, in SAS, is coming out soon!

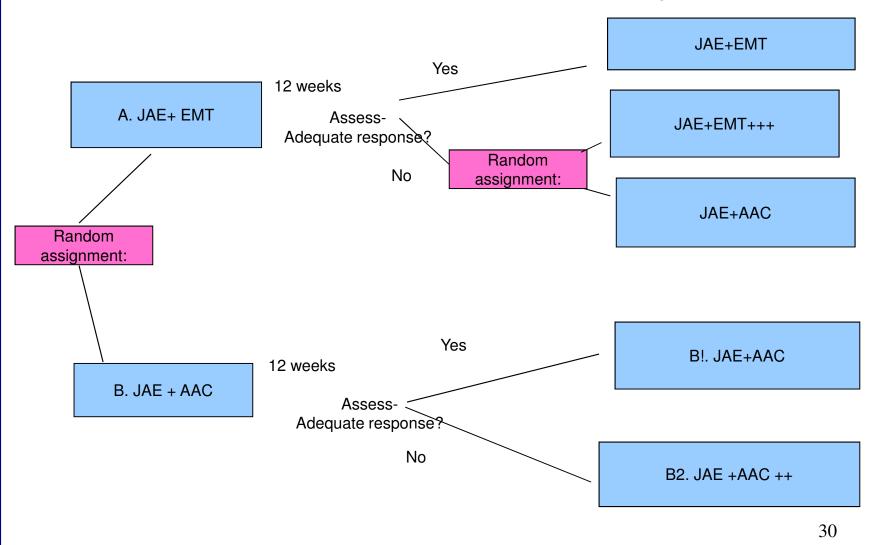
https://methodology.psu.edu/ra/adap-treatstrat/qlearning

• Aside: Non-adherence is an outcome (like side effects) that indicates need to tailor treatment.

This seminar can be found at:

http://www.stat.lsa.umich.edu/~samur

http://www.stat.lsa.umich.edu/~samurphy/seminars/EIC Chicago.04.21.12.pdf


This seminar is based on work with many collaborators some of which are: L. Collins, E. Laber, M. Qian, D. Almirall, K. Lynch, J. McKay, D. Oslin, T. Ten Have, I. Nahum-Shani & B. Pelham. Email me with questions or if you would like a copy:

samurphy@umich.edu

Jones' Study for Drug-Addicted Pregnant Women rRBT 2 wks Response Random **tRBT** assignment: **tRBT tRBT** Random assignment: Nonresponse **eRBT** Random assignment: aRBT 2 wks Response Random assignment: rRBT rRBT Random assignment: tRBT Nonresponse rRBT

Oslin ExTENd Naltrexone 8 wks Response Random TDM + Naltrexone Early Trigger for assignment: Nonresponse CBI Random assignment: Nonresponse CBI +Naltrexone Random assignment: Naltrexone 8 wks Response Random assignment: TDM + Naltrexone Late Trigger for Nonresponse Random assignment: CBI Nonresponse CBI +Naltrexone

Kasari Autism Study

