Correlation, Consumption, Confusion, or Constraints: Why do Poor Children Perform so Poorly?

Elizabeth Caucutt Lance Lochner Youngmin Park

(University of Western Ontario)

HUMAN CAPITAL AND ECONOMIC OPPORTUNITY GLOBAL WORKING GROUP

Conference on Social Mobility November 4-5, 2014

- Children from poor families perform much worse than children from better-off families
- Differences emerge early and persist/grow with age (Carneiro & Heckman 2002, Cunha, et al. 2006)

PIAT-Math Scores Ages 6-7

PIAT-Reading Recognition Scores Ages 6-7

PIAT-Reading Comprehension Scores Ages 6-7

What leads to early skill gaps?

• We consider a human capital investment framework where gaps arise from different investments and/or differential returns on investments

Ages 2-3 Investments

1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 Mom reads 3+ times/week Eat w/mom & dad daily Child sees father daily 10+ books at home Child leaves house 4+ times/week

Family Investments in Children Ages 2-3 by Family Income (DPV Income Ages 0-7)

Ages 6-7 Investments

Investment Factor Scores Ages 0-7

Investment Factor Scores by Age and Parental Income Quartiles (DPV Income Ages 0-7)

Caucutt, Lochner & Park

Ages 2-3 Investment Factor Score

Ages 6-7 Investment Factor Score

Potential Mechanisms

We study the following potential mechanisms/theories:

• Intergenerational correlation in ability

• Becker & Tomes (1979, 1986)

- 'Consumption' value of schooling
 - college choices (Carneiro, Heckman & Vytlacil 2011, Keane & Wolpin 2001)
- Poor information
 - disadvantaged mothers under-estimate productivity of early investments (Cunha, Elo & Culhane 2013)
- Borrowing constraints
 - intergenerational and lifecycle constraints
 - Becker & Tomes (1979, 1986), Caucutt & Lochner (2013), Cunha (2006)

Sorting These Theories Out

- How can we sort amongst these possibilities?
- Which of these mechanisms or theories can explain a wide range of other related empirical regularities?
 - briefly summarize evidence
 - $\circ~$ develop related predictions from different theories

- First-born children receive more early investments and education; have higher cognitive achievement (Black, Devereux & Salvanes 2005, Lehmann, Nuevo-Chiquero, & Vidal-Fernandez 2013, Pavan 2014, Price 2008)
 - $\,\circ\,$ differences are apparent very early (but not at birth)

 First-born children receive more early investments and education; have higher cognitive achievement (Black, Devereux & Salvanes 2005, Lehmann, Nuevo-Chiquero, & Vidal-Fernandez 2013, Pavan 2014, Price 2008)

 $\,\circ\,$ differences are apparent very early (but not at birth)

- Marginal returns to early childhood investments are high, especially for economically disadvantaged children
 - summaries by Cunha, et al. (2006), Blau & Currie (2006), Karoly, et al. (1998)
 - $\circ~$ private IRR for Perry Preschool \approx 8% (Heckman, et al. 2010)
 - Cunha, Heckaman & Schennach (2010) show optimal allocation of investment expenditures provides more to young disadvantaged children

- Exogenous increases in parental income improve cognitive achievement, IQ, health (Dahl & Lochner 2012, Duncan, Morris & Rodrigues 2012, Loken 2010, Loken, Mogstad & Wiswall 2012, Milligan & Stabile 2011)
 - effects appear to be greater for more disadvantaged children
 - income increases expenditures on education-related investments (Milligan & Stabile 2014)
 - permanent income shocks increase investments but transitory shocks do not (Carneiro & Ginja 2014)
 - Cunha, et al. (2010) estimate significant effects of current income on investments ages 1-14

- Exogenous increases in parental income improve cognitive achievement, IQ, health (Dahl & Lochner 2012, Duncan, Morris & Rodrigues 2012, Loken 2010, Loken, Mogstad & Wiswall 2012, Milligan & Stabile 2011)
 - effects appear to be greater for more disadvantaged children
 - income increases expenditures on education-related investments (Milligan & Stabile 2014)
 - permanent income shocks increase investments but transitory shocks do not (Carneiro & Ginja 2014)
 - Cunha, et al. (2010) estimate significant effects of current income on investments ages 1-14
- Income at earlier ages appears to be more important for investment, achievement, and educational attainment (Caucutt & Lochner 2006, 2013, Pavan 2014)
 - Carneiro & Heckman (2002) find no significant differences for college attendance

Theory: One Base Framework, 4 Mechanisms

- Mostly focus on key implications of different mechanisms for:
 - investment behavior
 - marginal returns on investment
 - human capital outcomes
 - $\circ~\mbox{investment}/\mbox{human}$ capital responses to income changes
- Also, discuss role of dynamic complementarity in some cases
- Compare predictions with evidence/literature

Basic Framework

- Three stages of life:
 - \circ *Early childhood:* i_1 (may be a vector) and c_1
 - \circ Late childhood: i_2 and c_2
 - Adulthood: work and consume
- Period utility, $u(\boldsymbol{c})$ is strictly increasing, strictly concave and satisfies Inada conditions
- Discount time at rate $\beta \in (0,1)$
- 'Parental' income in childhood periods: y_1 and y_2
- Human capital investment prices: p_1 and p_2
- Tastes for early investments, νi_1
- Gross rate of return on assets is $R=\beta^{-1}\geq 1$

Human Capital Production

- Early investments produce $h_2 = g(i_1)$
- Human capital upon adulthood is:

$$h_3 = \theta f(h_2, i_2)$$

 $\circ~\theta$ reflects ability to learn

Assume:

- Investments are productive: $f_1 > 0$ and $f_2 > 0$
- Strict concavity: $f_{11} < 0$, $f_{22} < 0$, and $f_{12}^2 < f_{11}f_{22}$
- $f_{12} > max\left\{f_{22}\left(\frac{f_1}{f_2}\right), f_{11}\left(\frac{f_2}{f_1}\right)\right\}$

General Decision Problem

$$\max_{c_1, c_2, i_1, i_2, a_2, a_3} E[u(c_1) + \nu i_1 + \beta u(c_2) + \beta^2 V_3(a_3, h_3)]$$

subject to budget constraints:

$$a_{j+1} = Ra_j + y_j - p_j i_j - c_j$$
 for $j = 1, 2$,

where $a_1 = 0$, $h_2 = g(i_1)$, and $h_3 = \theta f(h_2, i_2)$

- + $V_3(\cdot,\cdot)$ reflects the value function for young adults
- Written as a lifecycle problem but can be mapped into an intergenerational model with altruism (Caucutt & Lochner 2013)
 - $\circ \ y_1$ and y_2 reflect parental income flows during early and late childhood
 - Define DPV of parental income: $Y \equiv y_1 + R^{-1}y_2$

Intergenerational Ability Correlation

Assumptions

- Three-period problem: $V_3(a, h) = u(Ra + h)$
- Full information, no uncertainty
- $h_2 = i_1$ (a scalar)
- Normalize prices $p_1 = p_2 = 1$
- No tastes for investment: $\nu = 0$
- Intergenerational ability correlation implies that $Cov(Y,\theta)>0$
 - $\circ~$ Focus on effects of ability

Analytical Results

• MR on investments equal the interest rate for everyone:

$$\begin{array}{rcl} \displaystyle \frac{\partial h_3}{\partial i_1} & = & \displaystyle \theta f_1(i_1^*,i_2^*) = R^2 \\ \displaystyle \frac{\partial h_3}{\partial i_2} & = & \displaystyle \theta f_2(i_1^*,i_2^*) = R \end{array}$$

- i_1 , i_2 , and h_3 are strictly increasing in ability
- Investments and the MR on investments do not depend on parental income $y_{\rm 1},\,y_{\rm 2}$

Empirical Implications

- If $Cov(Y, \theta) > 0$, then child investments, human capital and wages should be positively correlated with DPV of parental income Y
- Timing of income only relevant to the extent that it is correlated with child ability
 - if ability is positively correlated with income growth, then we should expect early parental income to be *less* correlated with child investments and human capital than late parental income
- MR on investments should equal return on savings
 uncorrelated with parental income and ability
- Exogenous changes in parental income should not affect child investments or human capital

Consumption Value of Investment

• Non-zero consumption value of early investment: $u \neq 0$

- Other assumptions same as in previous framework
- FOCs for consumption and investment imply:

$$\theta f_1(i_1, i_2) = \left[1 - \frac{\nu}{u'(c)} \right] R^2$$

$$\theta f_2(i_1, i_2) = R$$

- For $\nu > 0$:
 - $\circ\,$ MR on early investment is strictly less than the return on savings and strictly decreasing in DPV of parental income, Y
 - $\circ~i_1$ and h_3 are strictly increasing in Y
 - $\circ~i_2$ is increasing in Y if and only if $f_{12}(i_1^*,i_2^*)\geq 0$
- $\nu < 0$ yields opposite predictions

Empirical Implications

Tastes for investment $(\nu > 0)$:

- Positive effects of parental income on child investment, test scores, and education
- Higher MR on early investments for poor children
- MR on early investments < return on savings
- Timing of income is irrelevant

Empirical Implications

Tastes for investment $(\nu > 0)$:

- Positive effects of parental income on child investment, test scores, and education
- Higher MR on early investments for poor children
- MR on early investments < return on savings
- Timing of income is irrelevant

Perhaps, $\nu < 0$ for low-income families

- Can yield low investments and high MR to investment for poor
- Negative effects of parental income on investment, test scores, and education among poor
- Timing of income is irrelevant

Confusion

Caucutt, Lochner & Park

Different forms of Confusion

We consider two different ways poor families may be confused or mis-informed:

- Subjective uncertainty about return to investment
 - \circ unbiased priors
- Incorrect prior knowledge about return to investment
 - no subjective uncertainty, but potentially wrong beliefs about productivity of early investments

Different forms of Confusion

We consider two different ways poor families may be confused or mis-informed:

- Subjective uncertainty about return to investment
 - unbiased priors
- Incorrect prior knowledge about return to investment
 - no subjective uncertainty, but potentially wrong beliefs about productivity of early investments

Assume
$$\nu = 0$$
 and $V_3(a, h) = u(Ra + h)$

I. Uncertainty about Final Returns

• θ is uncertain and realized after investments are made

- uncertainty about general ability
- $\circ~$ uncertainty about labor market returns to skill
- \circ no insurance
- No distortion between $i_1 \mbox{ and } i_2, \mbox{ but overall investment spending is affected}$
- Define 'indirect production function':

$$h(e) \equiv \max_{i_1, i_2} \left\{ f(i_1, i_2) \middle| p_1 i_1 + R^{-1} p_2 i_2 \le e \right\}$$

- e reflects total expenditures on investment
- $h(\cdot)$ is increasing and concave

Implications

$$E[\theta]h'(e) + \underbrace{\frac{\mathsf{Cov}(u'(c_3), \theta)}{E[u'(c_3)]}}_{<0}h'(e) = R^2$$

• Expected MR on investments exceed the return on savings

$$E\left[rac{\partial h_3}{\partial (p_1 i_1)}
ight] > R^2 \quad ext{and} \quad E\left[rac{\partial h_3}{\partial (p_2 i_2)}
ight] > R$$

- Under-investment due to uninsurable risk
- Investment is increasing in parental income Y if $u(\cdot)$ exhibits decreasing absolute risk aversion
 - timing of income irrelevant

II. Subjective Uncertainty about Productivity of Early Investment

- Subjective uncertainty about productivity of i_1
 - \circ $h_2 = wi_1$
 - \circ Beliefs $ilde{w} \sim F_{ ilde{w}}(\cdot)$ with $E(ilde{w}) = w$
- w is learned after i_1 is invested, but before i_2
- Assume risk neutrality to focus on production uncertainty: $\boldsymbol{u}(\boldsymbol{c}) = \boldsymbol{c}$
- Optimal i_2 conditional on h_2 solves $\theta f_2(h_2, i_2(h_2))/p_2 = R$
- Optimal *i*₁ solves

$$\theta E\Big[\tilde{w}f_1\big(\tilde{w}i_1, i_2(\tilde{w}i_1)\big)\Big]/p_1 = R^2$$

Implications

• A mean-preserving spread in distribution of \tilde{w} reduces i_1 if $\tilde{w}f_1(\tilde{w}i_1, i_2(\tilde{w}i_1))$ is concave in \tilde{w}

 $\circ~$ true for CES $f(\cdot)$ if the elasticity of sub. ≥ 1

- Lower $i_1 \rightarrow \text{higher MR on } i_1$
- Lower $i_1 \rightarrow$ lower i_2 (if $f_{12} > 0$) and lower h_3
- No direct effect of parental income, y_1 or y_2 , on investment behavior
 - $\circ~$ unless income changes information

III. Incorrect Prior Knowledge about Productivity of Early Investment

- Assume early investment consists of n activities: $i_1 = (i_1(1), \dots, i_1(n))$ and $p_1 = (p_1(1), \dots, p_1(n))$
- Interim production function:

$$h_2 = g(\mathbf{i}_1) = \left(\sum_{j=1}^n [w(j)i_1(j)]^{\phi}\right)^{\frac{1}{\phi}}, \quad \phi < 1$$

• Unit cost ("price") of early investment, h_2 :

$$q = \left(\sum_{j=1}^{n} \left[\frac{w(j)}{p_1(j)}\right]^{\frac{\phi}{1-\phi}}\right)^{\frac{-(1-\phi)}{\phi}}$$

• Early investment expenditure: $e_1 = \boldsymbol{p}_1 \cdot \boldsymbol{i}_1 = q \cdot h_2$

Effects of Incorrect Beliefs

- Individuals have wrong beliefs about $w(\cdot): \ ilde{w}(\cdot)
 eq w(\cdot)$
- For $\tilde{q}=q,$ there is no effect of incorrect beliefs on early investment expenditure e_1 but less human capital h_2 would be produced
 - $\circ~$ follows directly from the definition of output maximization
- Early investment spending e₁ is lower under w̃ if and only if q̃ > q (assumes demand elasticity > 1)
 o also implies lower h₂
- Lower $h_2 \rightarrow$ lower i_2 (if $f_{12} > 0$) and lower h_3
- actual MR to e_1 is tricky
 - \circ low h_2 suggests high MR
 - $\circ~$ inefficient allocation reduces MR

Systematic Downward Bias

- Suppose belief \tilde{w} proportionally under-estimates productivity of all activities
 - $\circ \ \tilde{w}(j) = \eta w(j) \text{ for } \eta < 1$
- Individuals with belief \tilde{w} invest less in all activities and have lower h_2
 - $\circ\,$ only level of early investments are distorted, not their relative expenditure proportions
- Lower $h_2 \rightarrow$ lower i_2 (if $f_{12} > 0$) and lower h_3
- Higher MR to i_1 and e_1

Non-systematic Bias

- Misinformation need not lead to under-investment
- Consider the following example with n=2
 - \circ normalize $p_1(1) = p_1(2)$
 - $\,\circ\,$ assume $i_1(1)$ is less efficient, i.e. w(1) < w(2)
 - $\circ~$ assume $w(1)^\phi+w(2)^\phi=\tilde{w}(1)^\phi+\tilde{w}(2)^\phi=1,$ so no average bias in productivity beliefs
- Let \tilde{e}_1 and e_1 be total investment expenditures under beliefs \tilde{w} and w

Implications for Investment Expenditures

Misinformation and Human Capital

Better information can even lead to lower levels of final human capital if, for example,

- different early investment activities are similarly productive
- early investment activities are sufficiently substitutable
- early and late investments are sufficiently substitutable
- beliefs are strongly biased towards one activity at expense of the other

 \rightarrow over-investment in one activity due to misperceptions can more than compensate for under-investment in the other

Uncertainty (resolved after school) and risk aversion

- Leads to lower investment levels
- Expected MR on investments exceed return on savings
- Decreasing absolute risk aversion implies positive effects of parental income ${\boldsymbol Y}$ on investments
 - MR higher for low income families
- Timing of income is irrelevant

Poor may have greater subjective uncertainty about productivity of irreversible early investments

- If elasticity of subs. between early and late investments $>1, \ensuremath{\mathsf{then}}$
 - $\circ~({\sf even~risk~neutral})$ poor will have lower early investment levels
 - $\circ~$ lower investments imply a high MR to early investment
 - \circ also imply lower i_2 (if $f_{12} > 0$) and h_3
 - $\circ~$ better information should reduce these inefficiencies
 - later siblings should perform better
- Changes in parental income would have no effect on investments (without risk aversion)

Poor may hold incorrect beliefs about productivity of different early investment activities

- Under-estimating the productivity of all investment activities
 - \circ under-investment in all $i_1(j)$
 - \circ lower h_2 and h_3
 - \circ lower i_2 if and only if $f_{12} > 0$
 - $\circ\,$ poor should have high MR on early investments
 - $\circ~$ better information should reduce these inefficiencies
 - later siblings should perform better
 - changes in parental income should not affect investments

- Under-estimating the productivity of some activities and over-estimating the productivity of others
 - $\circ\,$ should see poor invest more in some activities, less in others
 - can lead to under- or over-expenditure on early investments, higher or lower human capital levels
 - $\circ\,$ better information need not increase educational expenditures or raise human capital levels
 - changes in parental income should not affect investments

Borrowing Constraints

Assumptions

- Full information, no uncertainty
- $h_2 = g(i_1) = i_1$, where i_1 is a scalar
- Normalize prices $p_1 = p_2 = 1$
- No tastes for investment: $\nu = 0$
- Incorporate borrowing constraints:

$$\begin{array}{rcl} a_2 & \geq & -L_1 \\ a_3 & \geq & -L_2 \end{array}$$

Adulthood

- Consider effects of constraints during both childhood and adulthood
- Let $V_3(a_3,h_3)$ reflect the value function from the asset allocation problem for individuals that live T-2 periods as an adult
- Assume human capital exogenously grows in adulthood:

$$h_t = \Gamma_t h_3, \quad \Gamma_3 = 1$$

Defining $V_3(a_3, h_3)$

$$V_3(a_3, h_3) = \max_{c_3, \dots, c_T} \sum_{t=3}^T \beta^{t-3} u(c_t)$$

subject to budget constraints

$$a_{t+1} = Ra_t + h_t - c_t$$
 for $t = 3, ..., T$,

 $a_{T+1} = 0$, and borrowing constraints

$$a_{t+1} \ge -L_t$$
 for $t = 3, ..., T - 1$.

If borrowing constraints in adulthood do not bind, we have:

$$V_3(a,h) = v(Ra + \chi h), \quad \chi = \sum_{t=3}^T R^{3-t} \Gamma_t$$

FOCs

- Assets: $u'(c_j) \ge \beta R u'(c_{j+1})$, the inequality is strict if and only if the borrowing constraint for that period binds
- Investment:

$$u'(c_1) = \beta^2 \left[\frac{\partial V_3(a_3, h_3)}{\partial h_3} \right] \theta f_1(i_1, i_2)$$
$$u'(c_2) = \beta \left[\frac{\partial V_3(a_3, h_3)}{\partial h_3} \right] \theta f_2(i_1, i_2)$$

• Combining asset and investment FOCs yields:

$$\frac{f_1(i_1, i_2)}{f_2(i_1, i_2)} = \frac{u'(c_1)}{\beta u'(c_2)} \ge R$$

- If unconstrained: $\chi\theta f_1(i_1,i_2)=R^2$ and $\chi\theta f_2(i_1,i_2)=R$

Analytical Results: Role of Constraints

Binding borrowing constraints in *current or any future* period:
 imply a high MR on investments:

$$\begin{aligned} \frac{\partial(\chi h_3)}{\partial i_1} &= \chi \theta f_1(i_1^*, i_2^*) > R^2 \\ \frac{\partial(\chi h_3)}{\partial i_2} &= \chi \theta f_2(i_1^*, i_2^*) > R \end{aligned}$$

 $\circ~$ lead to under-investment in at least one period

Analytical Results: Effects of Parental Income

- If early constraint is non-binding, investments depend only on PDV of parental income, $Y=y_1+R^{-1}y_2$
- When early constraint binds, the timing of income matters and dynamic complementarity determines responses
 - $\circ~i_1$ is always increasing in y_1
 - $\circ~i_1$ is decreasing in y_2 when only the early constraint binds (later income exacerbates the constraint)
 - If both early and late constraints bind, then i_1 and i_2 are both increasing in y_1 and y_2 if and only if there is sufficient dynamic complementarity Cond. 1

Empirical Implications

If poor families are borrowing constrained...

- Poor should make lower early and late investments
- Poor should have high MR on investments
 - $\circ~$ relative to return on savings
 - relative to rich
- Increases in family income should increase investments
 - $\circ\,$ asymmetric response to early vs. late income $\rightarrow\,$ early constraints bind
 - $\circ~$ late investments increasing in early & late income \rightarrow strong complementarity and both constraints binding
- birth order effects?
 - family income tends to increase over time, suggesting later children might do better
 - $\circ\,$ greater competition for resources with more children suggests first child might do better

Summary

	Ability Correlation	Cons. Value (v > 0)	Uncertainty w/Risk Aversion	Poor have Downward Biased Beliefs	Credit Constraints
Birth Order	N	N	N	N	ο
High MR to i_1	N	N	Y	Y	Y
Higher MR for Poor	N	Y	Y	Y	Y
\uparrow Income $\rightarrow \uparrow i_1$	N	Y	Y	ο	Y
Timing of Income	N	N	N	N	Y

Conclusions

- Many potential explanations/theories for why poor children perform so poorly
- By looking closer at these theories, we can begin to distinguish between them
 - $\circ~$ helpful for identifying limits of different theories
 - helps in thinking about identification in more complicated structural models
 - helps identify areas where additional empirical work may be fruitful

"Sufficient Complementarity"

Complementarity Condition:

Back

Factor Score Weights

Factor Score Weights on Early Investment Measures

	Age Group				
Early Investment Measure	0-1	2-3	4-5	6-7	
Number of Books Child Has	0.32	0.24	0.20	0.12	
Mom Reading	0.32	0.26	0.21		
Eating w/ Mom and Dad	0.09	0.17	0.20	0.03	
Child Taken to Outing	0.17	0.13	0.14		
See Father Daily	0.10	0.20	0.24		
Musical Instrument				0.11	
Child Taken to a Performance				0.20	
Child Taken to a Museum				0.18	
Child Takes Lessons/Extracurr. Activities				0.16	
Get Daily Newspaper				0.08	
Encourage Hobbies				0.10	
Get Together with Family Friends				0.02	