TANF, Childcare and Well-being in Sole Parent Families

Marianne Bruins

oole Parent Families

- Welfare reform over past two decades (primarily welfare-to-work) focused on:
 - increasing work participation
 - discouraging welfare dependency
 - ▶ Ended an era of entitlement to cash welfare
- ▶ Growing evidence that unconditional cash transfers improve long-run outcomes for the children of sole mothers (Aizer et. al. 2016; Hoynes et. al. 2012)
- ► Cash welfare much more generous for families with children
 - ▶ Implicit (original) objective of cash welfare:
- Have welfare-to-work reforms in the US lost sight of this original objective?

- Welfare reform over past two decades (primarily welfare-to-work) focused on:
 - increasing work participation
 - discouraging welfare dependency
 - ▶ Ended an era of entitlement to cash welfare
- Growing evidence that unconditional cash transfers improve long-run outcomes for the children of sole mothers (Aizer et. al. 2016; Hoynes et. al. 2012)
- Cash welfare much more generous for families with children
 - ▶ Implicit (original) objective of cash welfare:
- Have welfare-to-work reforms in the US lost sight of this original objective?

- Welfare reform over past two decades (primarily welfare-to-work) focused on:
 - increasing work participation
 - discouraging welfare dependency
 - ▶ Ended an era of entitlement to cash welfare
- ▶ Growing evidence that unconditional cash transfers improve long-run outcomes for the children of sole mothers (Aizer et. al. 2016; Hoynes et. al. 2012)
- Cash welfare much more generous for families with children
 - ► Implicit (original) objective of cash welfare:
- Have welfare-to-work reforms in the US lost sight of this original objective?

- Welfare reform over past two decades (primarily welfare-to-work) focused on:
 - increasing work participation
 - discouraging welfare dependency
 - Ended an era of entitlement to cash welfare
- ▶ Growing evidence that unconditional cash transfers improve long-run outcomes for the children of sole mothers (Aizer et. al. 2016; Hoynes et. al. 2012)
- Cash welfare much more generous for families with children
 - Implicit (original) objective of cash welfare:
- Have welfare-to-work reforms in the US lost sight of this original objective?

- Welfare reform over past two decades (primarily welfare-to-work) focused on:
 - increasing work participation
 - discouraging welfare dependency
 - Ended an era of entitlement to cash welfare
- ▶ Growing evidence that unconditional cash transfers improve long-run outcomes for the children of sole mothers (Aizer et. al. 2016; Hoynes et. al. 2012)
- Cash welfare much more generous for families with children
 - Implicit (original) objective of cash welfare: targeting additional resources to children in impoverished households
- ► Have welfare-to-work reforms in the US lost sight of this original objective?

- Welfare reform over past two decades (primarily welfare-to-work) focused on:
 - increasing work participation
 - discouraging welfare dependency
 - Ended an era of entitlement to cash welfare
- ▶ Growing evidence that unconditional cash transfers improve long-run outcomes for the children of sole mothers (Aizer et. al. 2016; Hoynes et. al. 2012)
- Cash welfare much more generous for families with children
 - Implicit (original) objective of cash welfare: targeting additional resources to children in impoverished households
- ► Have welfare-to-work reforms in the US lost sight of this original objective?

▶ Welfare-to-work reforms a response to:

- ▶ increases in welfare caseloads
- increased non-martial childbearing
- perceived intergenerational culture of welfare dependence
- ▶ In the USA welfare reforms introduced:
 - work requirements
 - ▶ life-time limits
 - ▶ limits to federal expenditure on welfare
 - greater autonomy for states in designing welfare programmes

- Welfare-to-work reforms a response to:
 - increases in welfare caseloads
 - increased non-martial childbearing
 - perceived intergenerational culture of welfare dependence
- ▶ In the USA welfare reforms introduced:
 - work requirements
 - ▶ life-time limits
 - ▶ limits to federal expenditure on welfare
 - greater autonomy for states in designing welfare programmes

- ▶ Welfare-to-work reforms a response to:
 - increases in welfare caseloads
 - increased non-martial childbearing
 - perceived intergenerational culture of welfare dependence
- ▶ In the USA welfare reforms introduced:
 - work requirements
 - ▶ life-time limits
 - ▶ limits to federal expenditure on welfare
 - greater autonomy for states in designing welfare programmes

- ▶ Welfare-to-work reforms a response to:
 - increases in welfare caseloads
 - increased non-martial childbearing
 - perceived intergenerational culture of welfare dependence
- ▶ In the USA welfare reforms introduced:
 - work requirements
 - life-time limits
 - ▶ limits to federal expenditure on welfare
 - greater autonomy for states in designing welfare programmes

- Decline in welfare participation
- Modest increase in labour force participation
 - participation increased
 - hours worked increased
- Reduction in home production
 - decline in housework time-use
 - ▶ increase in expenditure on food away from home
 - decrease in expenditure on food at home

- Decline in welfare participation
- Modest increase in labour force participation
 - participation increased
 - hours worked increased
 - P
- Reduction in home production
 - decline in housework time-use
 - ▶ increase in expenditure on food away from home
 - decrease in expenditure on food at home

- ▶ Decline in welfare participation
- Modest increase in labour force participation
 - participation increased
 - hours worked increased
- Reduction in home production
 - decline in housework time-use
 - ▶ increase in expenditure on food away from home
 - decrease in expenditure on food at home

- ▶ Decline in welfare participation
- Modest increase in labour force participation
 - participation increased
 - hours worked increased
- Reduction in home production
 - decline in housework time-use
 - ▶ increase in expenditure on food away from home
 - decrease in expenditure on food at home

- Decline in welfare participation
- Modest increase in labour force participation
 - participation increased
 - hours worked increased
- Reduction in home production
 - decline in housework time-use
 - increase in expenditure on food away from home
 - decrease in expenditure on food at home

Household decision-making

 $ightharpoonup U_i$ is mother's utility:

$$U_i = u_i(c_i, l_i, q) + \delta_{iK}K(c_k, t_f, q) + \psi(x\beta)$$

- ▶ mother allocates time between: market work h_i, housework a_i, time with children t_i, and leisure l_i.
- K is children's utility
- $ightharpoonup q = q(c_a, a_f)$ is quantity of public good produced
- lacktriangledown ψ is the disutility from participating in the TANF/AFDC program

Household decision-making

 $ightharpoonup U_i$ is mother's utility:

$$U_i = u_i(c_i, I_i, q) + \delta_{iK}K(c_k, t_f, q) + \psi(x\beta)$$

- ▶ mother allocates time between: market work h_i, housework a_i, time with children t_i, and leisure l_i.
- K is children's utility
- $ightharpoonup q = q(c_q, a_f)$ is quantity of public good produced
- lacktriangledown ψ is the disutility from participating in the TANF/AFDC program

Functional forms

Parent's utility:

$$u(c, l, q) = \log c + \alpha_l \log l + \alpha_q \log q$$

► Children's utility:

$$K(c,t_f,q) = A \left(\gamma_c c^{\eta} + \gamma_t t_f^{\eta} + \gamma_q q^{\eta} \right)^{1/\eta}$$

▶ Public good production:

$$q(c_q, a_f) = (\delta_c c_q^\kappa + (1 - \delta_c) a_f^\kappa)^{1/\kappa}$$

Disutility

$$\psi(x\beta) = \exp(x\beta)$$

Functional forms

Parent's utility:

$$u(c, l, q) = \log c + \alpha_l \log l + \alpha_q \log q$$

Children's utility:

$$K(c, t_f, q) = A \left(\gamma_c c^{\eta} + \gamma_t t_f^{\eta} + \gamma_q q^{\eta} \right)^{1/\eta}$$

Public good production:

$$q(c_q, a_f) = (\delta_c c_q^\kappa + (1 - \delta_c) a_f^\kappa)^{1/\kappa}$$

Disutility

$$\psi(x\beta) = \exp(x\beta)$$

Functional forms

Parent's utility:

$$u(c, l, q) = \log c + \alpha_l \log l + \alpha_q \log q$$

Children's utility:

$$K(c, t_f, q) = A \left(\gamma_c c^{\eta} + \gamma_t t_f^{\eta} + \gamma_q q^{\eta} \right)^{1/\eta}$$

Public good production:

$$q(c_q, a_f) = (\delta_c c_q^{\kappa} + (1 - \delta_c) a_f^{\kappa})^{1/\kappa}$$

Disutility:

$$\psi(x\beta) = \exp(x\beta)$$

Functional forms

Parent's utility:

$$u(c, l, q) = \log c + \alpha_l \log l + \alpha_q \log q$$

Children's utility:

$$K(c, t_f, q) = A \left(\gamma_c c^{\eta} + \gamma_t t_f^{\eta} + \gamma_q q^{\eta} \right)^{1/\eta}$$

Public good production:

$$q(c_q, a_f) = (\delta_c c_q^{\kappa} + (1 - \delta_c) a_f^{\kappa})^{1/\kappa}$$

Disutility:

$$\psi(x\beta) = \exp(x\beta)$$

Constraints

Budget constraint

$$c_f + c_k + c_q + \text{cost of childcare} \le AT(h_f; w_f) + y - s$$

- ► AT(·) gives after-tax earnings
- ▶ y is 'non-labour income', s is 'savings'
- ▶ Time constraints: for $i \in \{m, f\}$

$$a_i + l_i + t_i \leq T - h_i$$

- ightharpoonup Budget set depends on h_f in a complicated way
 - to aid estimation, make hours choice discrete

Constraints

Budget constraint

$$c_f + c_k + c_q + \text{cost of childcare} \le AT(h_f; w_f) + y - s$$

- ► AT(·) gives after-tax earnings
- ▶ y is 'non-labour income', s is 'savings'
- ▶ Time constraints: for $i \in \{m, f\}$

$$a_i + l_i + t_i \leq T - h_i$$

- ightharpoonup Budget set depends on h_f in a complicated way
 - to aid estimation, make hours choice discrete

Constraints

Budget constraint

$$c_f + c_k + c_q + \text{cost of childcare} \le AT(h_f; w_f) + y - s$$

- ► AT(·) gives after-tax earnings
- ▶ y is 'non-labour income', s is 'savings'
- ▶ Time constraints: for $i \in \{m, f\}$

$$a_i + l_i + t_i \leq T - h_i$$

- ightharpoonup Budget set depends on h_f in a complicated way
 - to aid estimation, make hours choice discrete

Data Sources (1993–2008)

- Combine data from 5 disaggregated datasets on intra-household allocation:
 - Consumer Expenditure Survey
 - ► American Time-Use Survey / American Heritage Time-use Survey
 - Survey of Income and Program Participation
 - Current Population Survey

Data Sources (1993–2008)

- Combine data from 5 disaggregated datasets on intra-household allocation:
 - Consumer Expenditure Survey
 - ► American Time-Use Survey / American Heritage Time-use Survey
 - Survey of Income and Program Participation
 - Current Population Survey

Simulated method of moments

- Household choices spread across two datasets:
 - ▶ CEX: (c_k, c_f, c_m, c_q) and x (exogenous household covariates)
 - ► ATUS: $(h_f, h_m, t_f, t_m, a_f, a_m)$ and x
- Model implies the 'demand functions'

$$c_i = c_i(x, \epsilon_i; \tau)$$

 $t_i = t_i(x, \epsilon_i; \tau)$
 $h_i = h_i(x, \epsilon_i; \tau)$

- $ightharpoonup \epsilon_i$ is a vector of unobserved disturbances (assumed Gaussian)
- lacktriangle Estimate parameters au by simulated method of moments
 - ► Singles: 140 moments; 29 parameters

Simulated method of moments

- Household choices spread across two datasets:
 - ▶ CEX: (c_k, c_f, c_m, c_q) and x (exogenous household covariates)
 - ► ATUS: $(h_f, h_m, t_f, t_m, a_f, a_m)$ and x
- Model implies the 'demand functions'

$$c_i = c_i(x, \epsilon_i; \tau)$$

$$t_i = t_i(x, \epsilon_i; \tau)$$

$$h_i = h_i(x, \epsilon_i; \tau)$$

- ullet ϵ_i is a vector of unobserved disturbances (assumed Gaussian)
- ightharpoonup Estimate parameters au by simulated method of moments
 - Singles: 140 moments; 29 parameters

Simulated method of moments

- Household choices spread across two datasets:
 - ▶ CEX: (c_k, c_f, c_m, c_q) and x (exogenous household covariates)
 - ► ATUS: $(h_f, h_m, t_f, t_m, a_f, a_m)$ and x
- Model implies the 'demand functions'

$$c_i = c_i(x, \epsilon_i; \tau)$$

$$t_i = t_i(x, \epsilon_i; \tau)$$

$$h_i = h_i(x, \epsilon_i; \tau)$$

- $ightharpoonup \epsilon_i$ is a vector of unobserved disturbances (assumed Gaussian)
- ightharpoonup Estimate parameters au by simulated method of moments
 - Singles: 140 moments; 29 parameters

Choice of moments

▶ Moments conditioned on: parents' education, age of youngest child, number of children, parents' average wage.

 $c_{\rm pr} = c_f + c_m + c_k$, $\sqrt{\ }$ – exact data.

E – estimates obtained using Dunbar, Lewbel and Pendakur (2014).

Choice of moments

▶ Moments conditioned on: parents' education, age of youngest child, number of children, parents' average wage.

	t_f	a _f	h_f	c_f	c _k	Cq	<i>C</i> _{pr}
ATUS	✓	√	✓				
s.d.	\checkmark	\checkmark	\checkmark				
corr w/							
CEX							
s.d.							
corr w/							

 $c_{\rm pr} = c_f + c_m + c_k$, \checkmark – exact data.

E – estimates obtained using Dunbar, Lewbel and Pendakur (2014).

Choice of moments

▶ Moments conditioned on: parents' education, age of youngest child, number of children, parents' average wage.

	+.	2 -	h -	<u> </u>	<u> </u>		
	Lf	af	H	C _f	C _k	c_q	C _{pr}
ATUS	\checkmark	\checkmark	\checkmark				
s.d.	\checkmark	\checkmark	\checkmark				
corr w/							
CEX			✓			√	\checkmark
s.d.			\checkmark			\checkmark	\checkmark
corr w/							

 $c_{\mathrm{pr}} = c_f + c_m + c_k$, \checkmark – exact data.

E – estimates obtained using Dunbar, Lewbel and Pendakur (2014). ▶

Choice of moments

▶ Moments conditioned on: parents' education, age of youngest child, number of children, parents' average wage.

	t_f	a _f	h _f	Cf	c _k	c_q	C _{pr}
ATUS	✓	√	✓				
s.d.	\checkmark	\checkmark	\checkmark				
corr w/							
CEX			\checkmark	Ε	E	\checkmark	\checkmark
s.d.			\checkmark			\checkmark	\checkmark
corr w/							

 $c_{\mathrm{pr}} = c_f + c_m + c_k$, \checkmark – exact data.

E – estimates obtained using Dunbar, Lewbel and Pendakur (2014).

Choice of moments

▶ Moments conditioned on: parents' education, age of youngest child, number of children, parents' average wage.

	t_f	a_f	h_f	C_f	c_k	c_q	<i>C</i> _{pr}
ATUS	✓	√	√				
s.d.	\checkmark	\checkmark	\checkmark				
corr w/	h_f	h_f				$h_{f,m}$	$h_{f,m}$
CEX			\checkmark	Ε	Ε	\checkmark	\checkmark
s.d.			\checkmark			\checkmark	\checkmark
corr w/	h_f	h_f				$h_{f,m}$	$h_{f,m}$

 $c_{\rm pr} = c_f + c_m + c_k$, \checkmark – exact data.

E – estimates obtained using Dunbar, Lewbel and Pendakur (2014).

Accounting for life-time limits

- Reasons not to take TANF:
 - (a) ineligible (i.e. income too high)
 - (b) disutility from taking TANF too high
 - (c) life-time limits
- ► Extend Blundell and Walker (1987) to include lifetime limits
 - in first stage individual has some probability of not taking TANF if(a) and (b) hold
 - need to estimate probability
- Adopt approach from Grogger and Michalopoulos (2003)

- Reasons not to take TANF:
 - (a) ineligible (i.e. income too high)
 - (b) disutility from taking TANF too high
 - (c) life-time limits
- ▶ Extend Blundell and Walker (1987) to include lifetime limits
 - in first stage individual has some probability of not taking TANF if
 (a) and (b) hold
 - need to estimate probability
- Adopt approach from Grogger and Michalopoulos (2003)

- Reasons not to take TANF:
 - (a) ineligible (i.e. income too high)
 - (b) disutility from taking TANF too high
 - (c) life-time limits
- ▶ Extend Blundell and Walker (1987) to include lifetime limits
 - in first stage individual has some probability of not taking TANF if
 (a) and (b) hold
 - need to estimate probability
- Adopt approach from Grogger and Michalopoulos (2003)

- Approach from Grogger and Michalopoulos (2003):
- Estimate probit for receiving TANF with
 - ightharpoonup Dummy variable if mother never exposed to time-limits D_1
 - ▶ Youngest child over 12 when time-limits introduced in state
 - Dummy variable if mother only partially exposed to time-limits D₂
 - ▶ Youngest child already born when time-limits introduced in state
- ▶ Probability of not taking TANF due to life-time limits:

$$\left[\Phi\left(x_r'\hat{\beta}_r + \hat{\beta}_{D_1} + \epsilon_r > 0\right) - \Phi\left(x_r'\hat{\beta}_r + \hat{\beta}_{D_2}x_{D_2} + \hat{\beta}_{D_1}x_{D_1} + \epsilon_r > 0\right)\right]$$

- Approach from Grogger and Michalopoulos (2003):
- Estimate probit for receiving TANF with:
 - ightharpoonup Dummy variable if mother never exposed to time-limits D_1
 - ▶ Youngest child over 12 when time-limits introduced in state
 - Dummy variable if mother only partially exposed to time-limits D₂
 - ▶ Youngest child already born when time-limits introduced in state
- Probability of not taking TANF due to life-time limits:

$$\left[\Phi\left(x_r'\hat{\beta}_r + \hat{\beta}_{D_1} + \epsilon_r > 0\right) - \Phi\left(x_r'\hat{\beta}_r + \hat{\beta}_{D_2}x_{D_2} + \hat{\beta}_{D_1}x_{D_1} + \epsilon_r > 0\right)\right]$$

- Approach from Grogger and Michalopoulos (2003):
- Estimate probit for receiving TANF with:
 - Dummy variable if mother never exposed to time-limits D₁
 - Youngest child over 12 when time-limits introduced in state
 - Dummy variable if mother only partially exposed to time-limits D₂
 - Youngest child already born when time-limits introduced in state
- Probability of not taking TANF due to life-time limits:

$$\left[\Phi\left(x_r'\hat{\beta}_r + \hat{\beta}_{D_1} + \epsilon_r > 0\right) - \Phi\left(x_r'\hat{\beta}_r + \hat{\beta}_{D_2}x_{D_2} + \hat{\beta}_{D_1}x_{D_1} + \epsilon_r > 0\right)\right]$$

- ► Approach from Grogger and Michalopoulos (2003):
- Estimate probit for receiving TANF with:
 - ightharpoonup Dummy variable if mother never exposed to time-limits D_1
 - Youngest child over 12 when time-limits introduced in state
 - Dummy variable if mother only partially exposed to time-limits D₂
 - Youngest child already born when time-limits introduced in state
- Probability of not taking TANF due to life-time limits:

$$\left[\Phi\left(x_r'\hat{\beta}_r + \hat{\beta}_{D_1} + \epsilon_r > 0\right) - \Phi\left(x_r'\hat{\beta}_r + \hat{\beta}_{D_2}x_{D_2} + \hat{\beta}_{D_1}x_{D_1} + \epsilon_r > 0\right)\right]$$

- Approach from Grogger and Michalopoulos (2003):
- Estimate probit for receiving TANF with:
 - Dummy variable if mother never exposed to time-limits D₁
 - Youngest child over 12 when time-limits introduced in state
 - Dummy variable if mother only partially exposed to time-limits D₂
 - Youngest child already born when time-limits introduced in state
- Probability of not taking TANF due to life-time limits:

$$\left[\Phi\left(x_r'\hat{\beta}_r + \hat{\beta}_{D_1} + \epsilon_r > 0\right) - \Phi\left(x_r'\hat{\beta}_r + \hat{\beta}_{D_2}x_{D_2} + \hat{\beta}_{D_1}x_{D_1} + \epsilon_r > 0\right)\right]$$

- ▶ How has levels of child poverty changed over the last 20 years?
- No decline in child poverty in sole parent households since 1996 (Black 2002, Meyer et. al. 2003)
 - ► Estimates based on household level consumption and income
- Estimates don't account for:
 - home production
 - the value of maternal time
 - intra-household allocation

- ▶ How has levels of child poverty changed over the last 20 years?
- No decline in child poverty in sole parent households since 1996 (Black 2002, Meyer et. al. 2003)
 - Estimates based on household level consumption and income
- Estimates don't account for:
 - home production
 - the value of maternal time
 - intra-household allocation

- ▶ How has levels of child poverty changed over the last 20 years?
- No decline in child poverty in sole parent households since 1996 (Black 2002, Meyer et. al. 2003)
 - Estimates based on household level consumption and income
- Estimates don't account for:
 - home production
 - the value of maternal time
 - intra-household allocation

Intra-household allocation-based child poverty measures

- ▶ Children receive: private consumption (c_k) ; time with both parents (t_f, t_m) ; a home-produced public good (q)
 - ▶ Value goods at decentralised prices $(\tilde{w}_f, \tilde{w}_m, \tilde{p}_k)$
- ► Two measures of child's resources:
 - Consumption measure:

$$C_k := c_k + \tilde{p}_k q$$

where $\{\tilde{p}_i\}$ denotes the Lindahl prices for the public good.

► Full income measure:

$$\rho_k := C_k + \tilde{w}_f t_f + \tilde{w}_m t_m,$$

Intra-household allocation-based child poverty measures

- ▶ Children receive: private consumption (c_k) ; time with both parents (t_f, t_m) ; a home-produced public good (q)
 - ▶ Value goods at decentralised prices $(\tilde{w}_f, \tilde{w}_m, \tilde{p}_k)$
- ► Two measures of child's resources:
 - Consumption measure:

$$C_k := c_k + \tilde{p}_k q$$

where $\{\tilde{p}_i\}$ denotes the Lindahl prices for the public good.

► Full income measure:

$$\rho_k \coloneqq C_k + \tilde{w}_f t_f + \tilde{w}_m t_m$$

Intra-household allocation-based child poverty measures

- ▶ Children receive: private consumption (c_k) ; time with both parents (t_f, t_m) ; a home-produced public good (q)
 - ▶ Value goods at decentralised prices $(\tilde{w}_f, \tilde{w}_m, \tilde{p}_k)$
- ► Two measures of child's resources:
 - Consumption measure:

$$C_k := c_k + \tilde{p}_k q$$

where $\{\tilde{p}_i\}$ denotes the Lindahl prices for the public good.

► Full income measure:

$$\rho_k := C_k + \tilde{w}_f t_f + \tilde{w}_m t_m$$

Intra-household allocation-based child poverty measures

- ▶ Children receive: private consumption (c_k) ; time with both parents (t_f, t_m) ; a home-produced public good (q)
 - ▶ Value goods at decentralised prices $(\tilde{w}_f, \tilde{w}_m, \tilde{p}_k)$
- ► Two measures of child's resources:
 - Consumption measure:

$$C_k := c_k + \tilde{p}_k q$$

where $\{\tilde{p}_i\}$ denotes the Lindahl prices for the public good.

Full income measure:

$$\rho_k := C_k + \tilde{w}_f t_f + \tilde{w}_m t_m,$$

Intra-household allocation-based child poverty measures

- ▶ How has levels of child poverty changed over the last 20 years?
- Calculation
 - ► Take two measures of child resources
 - Calculate the 30th and 50th percentiles of distribution in 1993-95
 - ▶ How many children under this threshold in 2004-08?
 - ► Answer: approximately 45% and 65% for the 30th and 50th percentiles respectively

Intra-household allocation-based child poverty measures

- ▶ How has levels of child poverty changed over the last 20 years?
- Calculation
 - Take two measures of child resources
 - ► Calculate the 30th and 50th percentiles of distribution in 1993-95
 - ▶ How many children under this threshold in 2004-08?
 - Answer: approximately 45% and 65% for the 30th and 50th percentiles respectively

Intra-household allocation-based child poverty measures

- ▶ How has levels of child poverty changed over the last 20 years?
- Calculation
 - Take two measures of child resources
 - Calculate the 30th and 50th percentiles of distribution in 1993-95
 - How many children under this threshold in 2004-08?
 - ► Answer: approximately 45% and 65% for the 30th and 50th percentiles respectively

Intra-household allocation-based child poverty measures

- ▶ How has levels of child poverty changed over the last 20 years?
- Calculation
 - Take two measures of child resources
 - ► Calculate the 30th and 50th percentiles of distribution in 1993-95
 - How many children under this threshold in 2004-08?
 - ► Answer: approximately 45% and 65% for the 30th and 50th percentiles respectively

♦ Budget constraints: A'B'C' AFDC, ABB'C' TANF, ABC no welfare.

 \blacktriangleright

Mother doesn't take TANF

 $^{\Diamond}$ Budget constraints: A'B'C' AFDC, ABB'C' TANF, ABC no welfare.

- ▶ 20 per cent of sample on AFDC (1993-95)
- •

Mother doesn't take TANF

 $^{\Diamond}$ Budget constraints: A'B'C' AFDC, ABB'C' TANF, ABC no welfare.

- ▶ 20 per cent of sample on AFDC (1993-95)
- 9 per cent can get TANF while working 30 hours

 $^{^{\}Diamond}$ Budget constraints: A'B'C' AFDC, ABB'C' TANF, ABC no welfare.

- ▶ 20 per cent of sample on AFDC (1993-95)
- ▶ 9 per cent can get TANF while working 30 hours
- ▶ only 2 per cent do

 $^{\diamond}$ Budget constraints: A'B'C' AFDC, ABB'C' TANF, ABC no welfare.

 Alternative policies to encourage work, increase return from working (e.g. wage subsidy)

Budget constraints: AB' wage subsidy, AB no wage subsidy.

- ▶ With the model we can:
 - Consider changes to welfare different from those observed historically
 - Value resources at decentralised prices
- ▶ To quantify the value of welfare we ask the following question:

How much money do we need to give the mother (child) to make them as well off under the counterfactual, when the baseline is in place.

- ▶ With the model we can:
 - Consider changes to welfare different from those observed historically
 - Value resources at decentralised prices
- ▶ To quantify the value of welfare we ask the following question:

How much money do we need to give the mother (child) to make them as well off under the counterfactual, when the baseline is in place.

- ► Counterfactuals considered (sample 1993-2008):
 - ▶ replace TANF with AFDC (1995 parameters in real values)
 - ► replace TANF with free childcare
 - replace TANF with wage subsidy (\$1)
 - replace TANF with wage subsidy (wage floor \$11.60)

- Counterfactuals considered (sample 1993-2008):
 - replace TANF with AFDC (1995 parameters in real values)
 - ► replace TANF with free childcare
 - replace TANF with wage subsidy (\$1)
 - replace TANF with wage subsidy (wage floor \$11.60)

- Counterfactuals considered (sample 1993-2008):
 - replace TANF with AFDC (1995 parameters in real values)
 - replace TANF with free childcare
 - replace TANF with wage subsidy (\$1)
 - replace TANF with wage subsidy (wage floor \$11.60)

- Counterfactuals considered (sample 1993-2008):
 - replace TANF with AFDC (1995 parameters in real values)
 - replace TANF with free childcare
 - replace TANF with wage subsidy (\$1)
 - replace TANF with wage subsidy (wage floor \$11.60)

- Counterfactuals considered (sample 1993-2008):
 - ▶ replace TANF with AFDC (1995 parameters in real values)
 - replace TANF with free childcare
 - replace TANF with wage subsidy (\$1)
 - replace TANF with wage subsidy (wage floor \$11.60)

	CV _f (\$/wk)	<i>CV_k</i> (\$/wk)	net cost (\$/wk)	pass thru. %	recipients %
Switch from TANF to AFDC					
Received benefits under:					
AFDC	59.1				
AFDC only					
TANF and AFDC					

	•	<i>CV_k</i> (\$/wk)	pass thru. %	recipients %
Switch from TANF to AFDC				
Received benefits under:				
AFDC	59.1	36.9		
AFDC only				
TANF and AFDC				

	CV _f (\$/wk)	<i>CV_k</i> (\$/wk)		pass thru. %	recipients %
Switch from TANF to AFDC					
Received benefits under:					
AFDC	59.1	36.9	135.7		
AFDC only					
TANF and AFDC					

	CV _f (\$/wk)	<i>CV_k</i> (\$/wk)		pass thru. %	recipients %
Switch from TANF to AFDC					
Received benefits under:					
AFDC	59.1	36.9	135.7	27.2	
AFDC only					
TANF and AFDC					

	•	<i>CV_k</i> (\$/wk)	net cost (\$/wk)	pass thru. %	recipients %
Switch from TANF to AFDC					
Received benefits under:					
AFDC	59.1	36.9	135.7	27.2	22.3
AFDC only					
TANF and AFDC					

Counterfacturals

► Those that switch from TANF to AFDC – 63% of additional spending goes to children

	CV_f (\$/wk)	<i>CV_k</i> (\$/wk)	net cost (\$/wk)	pass thru. %	recipients %
Switch from TANF to AFDC					
Received benefits under:					
AFDC	59.1	36.9	135.7	27.2	22.3
AFDC only	62.6	41.1	163.3	25.2	17.5
TANF and AFDC					

Counterfacturals

► Those that switch from TANF to AFDC – 63% of additional spending goes to children

	CV _f (\$/wk)	<i>CV_k</i> (\$/wk)	net cost (\$/wk)	pass thru. %	recipients %
Switch from TANF to AFDC					
Received benefits under:					
AFDC	59.1	36.9	135.7	27.2	22.3
AFDC only	62.6	41.1	163.3	25.2	17.5
TANF and AFDC	46.2	21.4	34.9	61.2	4.8

	CV_f (\$/wk)	CV_k (\$/wk)	pass through	recipients %	net cost %
Childcare:					
CDCTC	18.2	10.1	70.1	24.3	14.4
Free childcare					
Counterfactual:					
CA					
СВ					
CC					

	CV_f	CV_k	pass through	recipients	net cost
	(\$/wk)	(\$/wk)	%	%	%
Childcare:					
CDCTC	18.2	10.1	70.1	24.3	14.4
Free childcare	61.4	50.2	68.8	29.8	72.9
Counterfactual:					
CA					
СВ					
CC					

► CA: TANF to free childcare.

	<i>CV_f</i> (\$/wk)	<i>CV_k</i> (\$/wk)	pass through	recipients %	net cost %
Childcare:					
CDCTC	18.2	10.1	70.1	24.3	14.4
Free childcare	61.4	50.2	68.8	29.8	72.9
Counterfactual:					
CA	39.6	34.0	90.2	36.8	37.6
СВ					
CC					

► CB: TANF to wage subsidy.

	CV_f (\$/wk)	CV_k (\$/wk)	pass through	recipients %	net cost
Childcare:					
CDCTC	18.2	10.1	70.1	24.3	14.4
Free childcare	61.4	50.2	68.8	29.8	72.9
Counterfactual:					
CA	39.6	34.0	90.2	36.8	37.6
СВ	16.4	14.3	130.6	84.0	11.0
CC					

► CC: TANF to minimum wage.

	CV_f (\$/wk)	CV_k (\$/wk)	pass through	recipients	net cost %
Childcare:					
CDCTC	18.2	10.1	70.1	24.3	14.4
Free childcare	61.4	50.2	68.8	29.8	72.9
Counterfactual:					
CA	39.6	34.0	90.2	36.8	37.6
СВ	16.4	14.3	130.6	84.0	11.0
СС	70.1	54.9	80.7	56.0	68.0

- ► Consider replacing TANF with AFDC (1995)
- ▶ Policy recipients:
 - mothers \$60 p/w better off
 - ► children \$40 p/w better off
- ▶ 30 per cent of spending on AFDC/TANF passes through to children

- ► Consider replacing TANF with AFDC (1995)
- Policy recipients:
 - mothers \$60 p/w better off
 - ► children \$40 p/w better off
- ▶ 30 per cent of spending on AFDC/TANF passes through to children

- ▶ Work requirements distort allocation of mothers' time
 - reduce home production
 - hurts children who care a lot about home production
 - child poverty in sole parent families has increased by 15 percent
- Consider replacing TANF with alternativess: free childcare, wage subsidy, minimum wage
 - ▶ at least twice as much home production per dollar spent
 - higher rates of pass through to children e.g. minimum wage 100 per cent pass through

- ▶ Work requirements distort allocation of mothers' time
 - reduce home production
 - hurts children who care a lot about home production
 - child poverty in sole parent families has increased by 15 percent
- Consider replacing TANF with alternativess: free childcare, wage subsidy, minimum wage
 - ▶ at least twice as much home production per dollar spent
 - higher rates of pass through to children e.g. minimum wage 100 per cent pass through

- Work requirements distort allocation of mothers' time
 - reduce home production
 - hurts children who care a lot about home production
 - child poverty in sole parent families has increased by 15 percent
- Consider replacing TANF with alternativess: free childcare, wage subsidy, minimum wage
 - at least twice as much home production per dollar spent
 - higher rates of pass through to children e.g. minimum wage 100 per cent pass through

- Work requirements distort allocation of mothers' time
 - reduce home production
 - hurts children who care a lot about home production
 - child poverty in sole parent families has increased by 15 percent
- Consider replacing TANF with alternativess: free childcare, wage subsidy, minimum wage
 - at least twice as much home production per dollar spent
 - higher rates of pass through to children e.g. minimum wage 100 per cent pass through

Decline in welfare participation

♦ Source: CPS. Sole mothers without a college degree.

Increase in labour supply

Hours worked per week

 $^{\lozenge}$ Source: CPS. Sole mothers without a college degree.

Increase in labour supply

Participation

 $^{\lozenge}$ Source: CPS. Sole mothers without a college degree.

Decline in home production

Housework

 $^{\lozenge}$ Source: AHTUS/ATUS. Sole mothers without a college degree.

Decline in home production

Food away from home

 $^{\Diamond}$ Source: CE. Sole mothers without a college degree.

Decline in home production

Food at home

 $^{\Diamond}$ Source: CE. Sole mothers without a college degree.

