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Complementaries 
 
Behind social interactions models is the assumption that 

complementarities exist between the behavior of individuals.  This idea 

has been very extensively explored in the economic literature, perhaps 

most deeply in the work on Paul Milgrom and John Roberts. 

 

Social interactions models are typically much less sophisticated than 

those studied in the game theory literature (although there are 

exceptions!!) 
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Example: Cooper and John 
 
Cooper and John’s (1988) paper illustrates the main ideas in modeling 

complementarities among economic agents.   

 

In their model, they consider I agents, each of whom makes an effort 

choice [ ]0,1ie ∈ . 
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Each agent has a payoff function 
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The payoff function is assumed twice differentiable.  Comment: I will not 

worry about corner solutions in the discussion. 
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The key to the Cooper and John analysis is the assumption that the 

payoff function exhibits complementarities. 
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Note this assumption means that for effort levels a b>  and c d> ,  
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which can be rewritten 

( ) ( ) ( ) ( ), , , ,i i i iV a e V b e V a e V b e− − − −− > −  

 
Critical Idea 

 

Complementarities induce a tendency towards similar behavior.  
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Equilibria 
 

A symmetric Nash equilibrium is an effort level NCe  such that 
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In contrast, a cooperative equilibrium is an effort level Ce such that 
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So the cooperative and noncooperative equilibria will not coincide unless  
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If  
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then the noncooperative equilibrium implies socially inefficient effort. 

 

Comment: Milgrom and Robert extend to vector choices, payoffs with 

discontinuities,  noncontinuous choice spaces. 
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Assortative Matching 
 

There is a classic result due to Becker (1973) that relates the efficiency of 

assortative matching to complementarity. I describe the model as it illustrates a 

deep relationship between complementarity and the nature of optimal matching 

of individuals across groups.  

 

Consider a population of N  men and N  women.  Suppose that the product of a 

marriage between man u  and woman v  depends on scalar characteristics um  

and vw  of the man and woman respectively. Suppose that the product of a given 

match is ( ),m wΦ  and that this function is increasing in both arguments.  Becker 

(1973) established the following. 
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Proposition. Optimality of assortative matching in the Becker marriage 
model 
 

If ( )2 ,
0

m w
m w

∂ Φ
≥

∂ ∂
 then assortative matching maximizes the sum of products 

across marriages. 
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Pf. Suppose there are two men with attributes a  and b  and two women with 

attributes c  and d . Assortative matching means the marriages are { },a c  and 

{ },b d . The sum of their product, in comparison to the non-assortatively match 

marriages  { },a d  and { },b c  
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 where the inequality is immediate since integral is over a positive function. 
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Notice that the Becker result takes the location of agent characteristics in the 

payoff function seriously; in other words the first argument of the function refers 

to the characteristics of the man and the second argument refers to the 

characteristics of the woman.   

 

Another way to think about the optimal matching problems is to simply say that 

one has NK  agents with scalar characteristics ia  who must be organized into K -

tuples, each of which produces some payoff. In this case, one cannot 

immediately equate complementarity with the efficiency of assortative matching.  
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In order to preserve the equivalence, it is necessary to add an assumption that 

Durlauf and Seshadri (2003) call permutation invariance. Permutation invariance 

means that if a  is a K -tuple of characteristics and a′ is a permutation of a , then  

 

( ) ( )a a′Φ = Φ  

 

In this case, one can show that assortative matching is also efficient.  
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To see why, consider any given initial configuration of agents into groups and 

take a pair of such groups.   

 

Reorder the vectors of characteristics for each group so that the elements in 

each run from largest to smallest. If the vectors do not exhibit assortative 

matching, replace them with their join and meet. This new configuration must 

produce at least as much as the original configuration.  Repeat this procedure for 

the two new vectors of characteristics.   

 

Eventually, you will produce assortatively matched vectors for the pair of vectors 

as an efficient allocation. If one then applies this to all pairs in the allocation, 

assortative matching will emerge as an output maximizing configuration.  See 

Durlauf and Seshadri (2003) for the formal argument.  
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Permutation invariance makes sense in some contexts. If a firm is assigned K  

workers, the firm’s manager will assign the workers to tasks in order to maximize 

total output.  The order in which the workers’ characteristics are reported does 

not matter to the manager.  When one considers contexts with permutation 

invariance, assortative matching is equivalent to stratification of agents across 

groups with respect to the characteristic a .  By stratification, I mean that the 

supports of the characteristics can be completely ordered using weak 

inequalities. 
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Robustness of Complementarity Assortative Matching Link 
 

Which assumptions are critical in linking the efficiency of assortative matching 

with complementarity?   

 

A first important assumption is that all groups are of equal size. In other words, 

the comparisons of the configurations of alternative group compositions in which 

supermodularity implies the efficiency of assortative matching presupposes that 

the arguments of the payoff functions have the same dimension.   

 

Durlauf and Seshadri (2003) gives an example in which assortative matching, 

breaks down when group sizes can differ.   
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The idea of their analysis is that firms (for example) have distinct production 

technologies according to the number of workers employed. Each of these 

functions may be supermodular. However, unless one places additional 

restrictions across these functions, there is no guarantee that assortative 

matching is efficient. To see this, suppose that there are three workers with 

characteristics 1 1a = , 2 1.5a =  and 3 2a =  respectively.  Suppose that the size-

specific payoff functions are 

 

( ) ( )( )1/32
1 .0001 max 1,0u u ua a aΦ = + −  

( ) ( )2 , .5u v u va a a aΦ = ⋅  

( )3 , , .0001u v w u v wa a a a a aΦ =  
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This example raises an additional question: under what conditions is it efficient to 

have multiple groups?  This type of question has been studied in many 

substantive contexts (e.g. the literature on span of control; a classic example is 

Williamson (1967)).  To think about multiple groups of different sizes, it is 

necessary to consider a set of size-specific payoff functions ( )IΦ ⋅ ; the subscript 

denotes the number of agents that are members of the group.  From the vantage 

point of the abstract payoff functions I have described, a necessary condition for 

the existence of multiple groups, assuming that ( )0 0IΦ = I∀   is that for at least 

one group of size I  and some one 0J >  

 

 ( ) ( ),0  if 0 0I J J Ia a a J+Φ < Φ > >  
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If multiple group sizes are efficient, the relationship between efficient segregation 

and the empirical density of the ua ’s will be complicated. In particular, there does 

not exist a monotonic relationship between the degree of inequality in the cross-

section distribution of ia  and the efficiency of integration of different types into 

one group.  

 

To see this, suppose that stratification is initially efficient for groups with 

characteristics b  and c , i.e. 

 

( ) ( ) ( ),I J I Jb c b c+Φ < Φ +Φ  

   

Suppose that c  declines to c′ . The payoff from integrating all agents changes by 

 

( ) ( ), ,I J I Jb c b c+ +′Φ −Φ  
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The payoff from continued stratification changes by  

 

( ) ( )J Jc c′Φ −Φ  

 

which means that increasing inequality can increase the relative attractiveness of 

integration of different ability types, if the allocation is efficient. 
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A second important assumption is that the environment is static. Assortative 

matching can be dynamically inefficient even if every static function of interest 

exhibits complementarities.   

 

This following numerical example, taken from Durlauf and Seshadri (in progress) 

illustrates general ideas.  
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Consider 4 agents who are tracked over 3 periods. Each agent is associated with 

a period-specific characteristic itω ; for concreteness assume that it is educational 

attainment.  The distribution of period 0 values is 10, 10, 20, 20.   

 

Agents are placed in two person groups, Think of these as classrooms. Agents 

are placed in pairs { },i i ′ . Pairings can differ between periods 0 and 1. The value 

of  1itω +  is determined by itω  and i tω ′ , the value for the agent with whom he is 

paired. The policymaker chooses the pairings.   

 

The objective of the policymaker is to maximize 2ω , i.e. the average 

characteristic in period 2.   
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Suppose that one step ahead transformation function for agent characteristics is  

 

( ) ( ) ( )1 1 2, ,it it i t it it i tf fφ ω ω ω ω ω ω′ ′+ = +  
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This function exhibits strict increasing differences (I do not use the term 

complementarities because the function is not differentiable everywhere.) 

 

Proposition. Dynamic inefficiency of assortative matching. 
 

If .03ε < , then for η  sufficiently small, then 2ω  is maximized by negative 

assortative matching in period 0 and assortative matching in period 1. 
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What is the general idea from the example?.   

 

Assortative matching is efficient when one wants to maximizes the average of 

something. For this problem, the period 0 rule should not maximize 1ω  ; it should 

choose the feasible distribution of 1iω  ‘s which is best for maximization of 2ω .  

 

This distribution depends on higher moments of the period one distribution than 

1ω . The shift from negative assortative matching to assortative matching in the 

efficient sorting rule has “real world” analogs, i.e. mixed high schools and 

stratified colleges.  
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What about equilibrium matching? In other words, it is one thing to ask how 

agents should be configured by a social planner who maximizes the sum of 

payoffs across groups. A distinct question is how agents will organize themselves 

in a decentralized environment. In the marriage case, Becker shows that the 

efficient (in terms of aggregate output) equilibrium in terms of male/female 

matches will occur when marriages are voluntary choices, so long as marital 

partners can choose how to divide the output of the marriage. This division of 

marital output is the analogy to market prices that would apply to labor market 

models in which workers are sorted to firms. Similarly, one can show that wages 

can support the efficient allocation of workers when increasing returns are 

absent.   
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Observations 
 

 

First, the link between assortative matching and efficiency produces a good 

example of a fundamental equity/efficiency tradeoff. To be concrete, efficiency in 

marital matches also maximizes the gap between the output of the highest and 

the lowest “quality” marriages.  
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Second, suppose that marital output cannot be arbitrarily divided; assume for 

simplicity that the output is nonrival so that both marriage partners receive it. 

(Parents will understand). Further, rule out transfers between the partners.  The 

ruling out of transfers is important as it means, in essence that neither member of 

the marriage can undo the nonrival payoff of the marriage.   

 

Under these assumptions, assortative matching will still occur, even if it is 

socially inefficient. The assumption that ( ),m wΦ  is increasing in both arguments 

is sufficient to ensure that the highest im  will match with the highest jw , etc. This 

indicates how positive spillovers can create incentives for segregation by 

characteristics even when the segregation is socially inefficient.  Durlauf and 

Seshadri (2003) suggest this possibility; it is systematically and much more 

deeply addressed in Gall, Legros, and Newman (2015).   
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Statistical Mechanics 
 

 

Statistical mechanics is a branch of physics which studies the aggregate 

behavior of large populations of objects, typically atoms.   

 

A canonical question in statistical mechanics is how magnets can appear 

in nature.  A magnet is a piece of iron with the property that atoms tend 

on average to be spinning up or down; the greater the lopsidedness the 

stronger the magnet.  (Spin is binary).     
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While one explanation would be that there is simply a tendency for 

individual atoms to spin one way versus another, the remarkable finding 

in the physics literature is that interdependences in spin probabilities 

between the atoms can, when strong enough, themselves be a source of 

magnetization.   

 

Classic structures of this type include the Ising and Currie-Weiss models. 
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Economists of course have no interest in the physics of such systems. 

On the other hand, the mathematics of statistical mechanics has proven 

to be useful for a number of modeling contexts.  As illustrated by the 

magnetism example, statistical mechanics models provide a language 

for modeling interacting populations.   

 

The mathematical models of statistical mechanics are sometimes called 

interacting particle systems or random fields, where the latter term refers 

to interdependent populations with arbitrary index sets, as opposed to a 

variables indexed by time.  
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Statistical mechanics models are useful to economists as these methods 

provide a framework for linking microeconomic specifications to 

macroeconomic outcomes.   

 

A key feature of a statistical mechanical system is that even though the 

individual elements may be unpredictable, order appears at an 

aggregate level.   

 

At one level, this is an unsurprising property; laws of large numbers 

provide a similar linkage. However, in statistical mechanics models, 

properties can emerge at an aggregate level that are not describable at 

the individual level.   
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Magnetism is one example of this as it is a feature of a system not an 

individual element.  

 

The existence of aggregate properties without individual analogues is 

sometimes known as emergence.   

 

As such, emergence is a way, in light of Sonnenschein-type results on 

the lack of empirical implications to general equilibrium theory, to make 

progress on understanding aggregate behavior in the presence of 

heterogeneous agents 
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The general structure of statistical mechanics models may be 

understood as follows.   

 

Consider a population of elements aω , where a  is an element of some 

arbitrary index set A.   

 

Let ω  denote vector all elements in the population and aω−  denote all the 

elements of the population other than a .   

 

Concretely, each iω  may be thought of as an individual choice.  
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A statistical mechanics model is specified by the set of probability 

measures 

 

 ( )a aµ ω ω−  (1) 

 

for all i.  These probability measures describe how each element of a 

system behaves given the behavior of other elements.   
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The objective of the analysis of the system is to understand the joint 

probability measures for the entire system, 

 

 ( )µ ω  (2) 

 

that are compatible with the conditional probability measures.    

 

Thus, the goal of the exercise is to understand the probability measure 

for the population of choices given the conditional decision structure for 

each choice. Stated this way, one can see how statistical mechanics 

models are conceptually similar to various game-theory models, an idea 

found in Blume (1993). 
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Dynamic versions of statistical mechanics models are usually modeled in 

continuous time.  One considers the process ( )i tω  and unlike the 

atemporal case, probabilities are assigned to at each point in time to the 

probability of a change in the current value.   

 

Operationally, this means that for sufficiently small δ  

 

( ) ( ) ( )( ) ( )( ) ( )( ),a a a a at t t f t t oµ ω δ ω δ ω ω ω δ δ−+ + ≠ = +  (3) 
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What this means is that at each t, there is a small probability that ( )i tω  

will change value, such a change is known as a flip when the support of 

( )a tω  is binary.  This probability is modeled as depending on the current 

value of element a as well as on the current (time t) configuration of the 

rest of the population.  Since time is continuous whereas the index set is 

countable, the probability that two elements change at the same time is 0 

when the change probabilities are independent.   
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Systems of this type lead to question of the existence and nature of 

invariant or limiting probability measures for the population, i.e. the study 

of 

 

 ( ) ( )( )lim 0t tµ ω ω⇒∞  (4) 

 

Discrete time systems can of course be defined analogously; for such 

systems a typical element is ,a tω .   
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Important Caveat 
 

This formulation of statistical mechanics models, with conditional 

probability measures representing the micro-level description of the 

system, and associated joint probability measures the macro-level or 

equilibrium description of the system, also illustrates an important 

difference between physics and economics reasoning.   

 

For the physicist, treating conditional probability measures as primitive 

objects in modeling is natural.  One does not ask “why” one atom’s 

behavior reacts to other atoms.  In contrast, conditional probabilities are 

not natural modeling primitives to an economics.   
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A Math Trick 
 

The conditional probability structure described by (1) can lead to very 

complicated calculations for the joint probabilities (2).  In the interests of 

analytical tractability, physicists have developed a set of methods 

referred to as mean field analyses.   

 

These methods typically involve replacing the conditioning elements in 

(1) with their expected values, i.e. 

 

 ( )( )a aEµ ω ω−  (5) 
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A range of results exist on how mean field approximation relate to the 

original probabilities models they approximate.   

 

From the perspective of economic reasoning, mean field approximations 

have a substantive economic interpretation as they implicitly mean that 

agents make decisions based on their beliefs about the behaviors of 

others rather than the behaviors themselves.   
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Markov Random Fields 
 

 

 

An important class of statistical mechanics models generalizes the 

Markov property of time series to general index sets.  
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Definition 1. Neighborhood. 
 

Let a A∈ . A neighborhood of a  , aN  is defined as a collection of indices 

such that 

 

i. aa N≠  

ii. b aa N b N∈ ⇔ ∈  

 

Neighborhoods can overlap. 
 
The collection of individual neighborhoods provides generalization of the 

notion of a Markov process to more general index sets than time. 
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Definition 2. Markov random field. 
 

Given a set of neighborhoods aN , if a∀  

 

 
( )

( ) ( )a a a b ab N

µ ω

µ ω ω µ ω ω−

⇒

= ∀ ∈
 (2.6) 

 

 then ( )µ ω  is a Markov random field with respect to the neighborhood 

system. 

 

For binary variables, again coded 1−  and 1, there are some well known 

examples of random fields on dZ  
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Hammersley-Clifford Theorem 
 

The Hammersley-Clifford theorem provides a general functional form 

for the joint probability measure of a Markov random field when the 

support of the individual random variables is binary.  In order to describe 

the theorem, it is necessary to introduce an additional type of subset of 

the indices, called a clique. 
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Definition 5. Clique. 

 

Given a neighborhood collection aN , a subset of the indices c  is a 

clique if each member of the set is a neighbor of each of the other 

members. 

 

With the definition of a clique, one can state the Hammersley-Clifford 

theorem.  
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Hammersley-Clifford theorem. 
 

( )µ ω  is the probability measure of a Markov random field if and only 

if  

 

 ( ) ( )exp c
c C

Vµ ω ω
∈

 
=  

 
∑  (2.7) 

 

where C  denotes a collection of cliques and the value of ( )cV ω  only 

depends on those elements of ω  whose indices lie in c . 
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Some additional definitions are standard in the statistical mechanics 

literature.  

 

Definition 6. Potential. 
 

Any set of functions ( )aV ω  defined over all subsets a  of the indices is 

called a potential.   

 
Definition 7. Neighborhood potential. 

 

A potential is a neighborhood potential if ( ) 0aV ω =  is not a clique.   
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Definition 8. Gibbs measure. 

 

The functional form  ( )exp a
a A

V ω
∈
∑  is called a Gibbs measure.  

 
Definition 9. Neighborhood Gibbs measure. 

 

The functional form ( )exp c
c C

V ω
∈

 
 
 
∑  is called a neighborhood Gibbs 

measure.   
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When suitably normalized, the Gibbs measures can represent probability 

measures.  Thus, the Hammersley-Clifford theorem states that all 

Markov random fields can be represented by neighborhood Gibbs 

probability measures. 

 

The basic idea of the proof is to consider  

 

 ( ) ( ) ( )log log 1 Gµ ω ω− − =  (2.8) 

 

( )log 1µ −  denotes the probability of a configuration in which each 

element equals 1− .  Moving from finite to countably infinite index sets is 

not a problem.  
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( )G ω  is expanded as 

 

( )
( ) ( ) ( )

,
...i a ab a b a b abc a b c a b c

a a b a a b a c a b

G

g g g

ω

ω ω ω ω ω ω ω ω ω ω ω
≠ ≠ ≠

=

+ + +∑ ∑∑ ∑∑ ∑

 (2.9) 

 

The proof involves showing that all g functions that are not associated 

with cliques equal zero. See Cressie (1993) for details. 
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Properties of Statistical Mechanics Models 
 

i. existence 
 

The first question one naturally asks for environments of the type 

described concerns the existence of joint or invariant probability measure 

over a population of elements in which conditional probabilities for the 

behaviors of the elements have been specified.   
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Existence results of this type differ from classic results such as the 

Kolmogorov extension theorem in that they concern the relationship 

between conditional probabilities and joint probabilities, rather than 

relationship (as occurs in the Kolmogorov case) between joint 

probabilities measure on finite sets of elements versus an infinite 

collection that represents the union of the various elements.   

 

Existence theorems are quite technical but do not, in my judgment, 

require conditions that are implausible from the perspective of 

socioeconomic systems.  
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ii. uniqueness or multiplicity 
 

The existence of a joint or invariant measure says nothing about how 

many such measures exist.   

 

When there are multiple measures compatible with the conditional 

probabilities, the system is said to be nonergodic.  
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Notice that for the dynamical models, the uniqueness question involves 

the dependence of the invariant measure on the initial configuration on 

( )0ω  or 0ω .   

 

Heuristically, for atemporal models, nonergodicity is thus the probabilistic 

analog to multiple equilibria whereas for temporal models, nonergodicity 

is the probabilistic analog to multiple steady states. 
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One of the fascinating features of statistical mechanics models is their 

capacity to exhibit nonergodicity in nontrivial cases.  

 

Specifically, nonergodicity can occur when the various direct and indirect 

connections between individuals in a population create sufficient 

aggregate independence across agents.    

 

As such statistical mechanics models use richer interactions structure 

than appear, for example in conventional time series model.   
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To see this, consider a Markov chain where  

 

( ) ( )1 1Pr 1 1 1 and Pr 0 0 1t t t tω ω ω ω− −= = ≠ = = ≠  

 

For this case  

 

( )0lim Prj t jω ω⇒∞ +  will not depend on 0ω .   
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However, suppose that 0I Z Z= × , i.e. the index set is the Cartesian 

product of the non-negative integers with the integers.  I use i  to capture 

denote the fact that its support is a cross product of integer lattices. 

Suppose that the system has a local Markov property of the form 

 

( ) ( ), 1 , 1, 1 , 1 1, 1Pr Pri t t i t i t i t i tω ω ω ω ω ω− − − − + −=


 

 

in words, the behavior of a particular ,i tω  depends on its value at 1t −  as 

well as its “nearest neighbors.”   

 

In this case, it is possible that ( ), 0lim Prj i t jω ω⇒∞ +


 does depend on 0ω


 

even though no conditional probability ( ), 1, 1 , 1 1, 1Pr i t i t i t i tω ω ω ω− − − + −  equals 1.   
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The reason for this is that in the case of an evolving set of Markov 

processes, there are many indirect connections.   

 

For example, the realization of 2, 2i tω − −  will affect ,i tω  because of its effect 

on 1, 1i tω − − ; no analogous property exists when there is a single element at 

each point in time.   

 

In fact, the number of elements at time t k−  that affect ,i tω  is, in this 

example, growing in k.  
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This does mean that such a system necessarily has multiple invariant 

measures, merely that it can when there is sufficient sensitivity of 

( ) ( ), 1 , 1, , 1 1, 1Pr Pr , ,i t t i t i t i t i tω ω ω ω ω ω− − − + −=


 to the realizations of 

1, , 1 1, 1 and i t i t i tω ω ω− − + − .  

 

For many statistical mechanics models, this dependence can be reduced 

to a single parameter.   
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For example the Ising model may be written  

 

( )
1

Pr expi i j
i j

Jω ω ω−
− =

 
∝   

 
∑ ; 

 

so J fully characterizes the degree of interdependence. 

 

In one dimension, the model is always ergodic, outside of trivial cases 

whereas for 2 dimensions it may not be.  
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In statistical mechanics model, one often finds threshold effects, i.e. 

when J is below some J J< ,  the system exhibits a unique invariant 

measure, whereas if J J> , multiple measures exist. 
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Another statistical mechanics model is the Curie Weiss model: 

 

( ) ( )Pr expi i iJω ω ω− −∝ ; 

 

Where iω−  is the average of the system elements other than i. (And yes, I 

am skipping technical details since there are an infinite number of 

elements). 

 

The mean field approximation for this model is 

 

( ) ( )Pr expi i JEω ω ω− ∝  
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Spin Glasses 

 
 

Some statistical mechanics models are based on general formulations of 

the form 

 

 ( ) expi i ij i j
i j

Jµ ω ω ωω−
≠

 
∝  

 
∑  (10) 
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In physics. ijJ  is usually treated as a random variable. When it can take 

on positive and negative values, this system is called a spin glass. 

 

Spin glasses can exhibit “frustration” which means that interactions can 

be conflicting.  
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Modeling Social Interactions 
 

We consider I  individuals who are members of a common group g.  

Our objective is to probabilistically describe the individual choices of 

each i, iω  (a choice that is taken from the elements of some set of 

possible behaviors iΩ ) and thereby characterize the vector of choices of 

all members of the group, ω .   

 

From the perspective of theoretical modeling, it is useful to distinguish 

between three sorts of influences on individual choices.  These 

influences have different implications for how one models the choice 

problem.  
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These components are  

 

ih , a vector of deterministic (to the modeler) individual-specific 

characteristics associated with individual i ,   

 

iε , a vector of random individual-specific characteristics associated with 

i , i.i.d. across agents, 

 

and  

 

( )e
iµ ω , the subjective beliefs individual i  possesses about behaviors in 

the group, expressed as a probability measure over those behaviors.  
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Individual choices iω  are characterized as representing the maximization 

of some payoff function V , 

 

 ( )( )argmax , , ,
i

e
i i i iV hλω λ µ ω ε∈Ω=  (11) 

 

The decision problem facing an individual as a function of preferences 

(embodied in the specification of V ), constraints (embodied in the 

specification of iΩ ) and beliefs (embodied in the specification of  ( )e
iµ ω ).   

 

As such, the analysis is based on completely standard microeconomic 

reasoning to describe individual decisions. 
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Beliefs 
 

This basic choice model is closed by imposing self-consistency between 

subjective beliefs ( )e
iµ ω  and the objective conditional probabilities 

( )| iFµ ω , where iF  denotes the information available to agent i .  We 

assume that agents know the deterministic characteristics of others as 

well as themselves and also understand the structure of the individual 

choice problems that are being solved.   
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This means that subjective beliefs obey 

 

 ( ) ( )( ),  e e
i j jh jµ ω µ ω µ ω= ∀  (12) 

 

where the right hand of this equation is the objective conditional 

probability measure generated by the model; self-consistency is 

equivalent to rational expectations in the usual sense.   

 

 

 

 

  72 



From the perspective of modeling individual behaviors, it is typically 

assumed that agents do not account for the effect of their choices on the 

decisions of others via expectations formation.  

 

In this sense, this framework employs a Bayes-Nash equilibrium 

concept. 
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A Multinomial Logit Approach to Social Interactions 

 

 

 

 

1. Each agent faces a common choice set with L  discrete possibilities, 

i.e. { }0,1, , 1i LΩ = − . 
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2. Each choice l  produces a payoff for i  according to: 

 

 , , , ,
e

i l i l i l i lV h Jp ε= + +  (13) 
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3. Random utility terms ,i lε  are independent across i  and l  and are 

doubly exponentially distributed with index parameter β , 

 

 ( ) ( )( ), exp expi lµ ε ς βς γ≤ = − − +  (14) 

 

where γ  is Euler’s constant. 
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Characterizing Choices 
 

These assumptions may be combined to produce a full description of the 

choice probabilities for each individual. 

 

 
( )

( )
, ,

{0... 1} , , , , ,

,

argmax ,

e
i i j i j

e e
j L i j i j i j i j i j

l h p j

h Jp l h p j

µ ω

µ ε∈ −

= ∀ =

+ + = ∀
 (15) 
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The double exponential assumption for the random payoff terms leads to 

the canonical multinomial logit probability structure  

 

 ( ) ( )
( )

, ,
, , 1

, ,
0

exp
,

exp

e
i l i le

i i j i j L
e

i j i j
j

h Jp
l h p j

h Jp

β β
µ ω

β β
−

=

+
= ∀ =

+∑
 (16) 

S 

o the joint probabilities for all choices may be written as 

 

   

( )
( )
( )

1 1 , ,

, ,
1

, ,
0

,..., , ,

exp

exp

i i

e
I I i j i j

e
i l i l

L
ei

i j i j
j

l l h p i j

h Jp

h Jp

µ ω ω

β β

β β
−

=

= = ∀ =

+

+
∏
∑

 (17) 
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Self-Consistency of Beliefs 
 

Self-consistent beliefs imply that the subjective choice probabilities e
lp  

equal the objective expected values of the percentage of agents in the 

group who choose l , lp , the structure of the model implies that 

 

 
( )
( )

,
, 1

,
0

exp

exp

i l le
i l l hL

i j j
j

h Jp
p p dF

h Jp

β β

β β
−

=

+
= =

+
∫
∑

 (18) 

 

where hF  is the empirical probability distribution for the vector of 

deterministic terms ,i lh .  
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It is straightforward to verify that under the Brouwer fixed point theorem, 

at least one such fixed point exists, so this model always has at least one 

equilibrium set of self-consistent aggregate choice probabilities. 
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Characterizing Equilibria 
 

To understand the properties of this model, it is useful to focus on the 

special case where , 0 ,i lh i l= ∀ .  For this special case, the choice 

probabilities (and hence the expected distribution of choices within a 

group) are completely determined by the compound parameter Jβ .   

 

An important question is whether and how the presence of 

interdependencies produces multiple equilibria for the choice 

probabilities in a neighborhood.  

 

  81 



In order to develop some intuition as to why the number of equilibria is 

connected to the magnitude of Jβ , it is helpful to consider two extreme 

cases for the compound parameter, namely 0Jβ =  and Jβ = ∞.    

 

For the case 0Jβ = , one can immediately verify that there exists a 

unique equilibrium for the aggregate choice probabilities such that 1
lp

L
=  

l∀ . This follows from the fact that under the assumption that all individual 

heterogeneity in choices come from the realizations of ,i lε , a process 

whose elements are independent and identically distributed across 

choices and individuals.  Since all agents are ex ante identical, the 

aggregate choice probabilities must be equal.   
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The case Jβ = ∞ is more complicated.  The set of aggregate choice 

probabilities 1
lp

L
=  is also an equilibrium if Jβ = ∞ since conditional on 

these probabilities, the symmetries in payoffs associated with each 

choice that led to this equilibrium when 0Jβ =  are preserved as there is 

no difference in the social component of payoffs across choices.   
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However, this is not the only equilibrium. To see why this is so, observe 

that for any pair of choices l  and l ′ for which the aggregate choice 

probabilities are nonzero, it must be the case that 

 

 ( )
( )

exp
exp

ll

l l

Jpp
p Jp

β
β′ ′

=  (19) 

 

for any Jβ . This follows from the fact that each agent is ex ante identical.  

Thus, it is immediate that any set of equilibrium probabilities that are 

bounded away from 0 will become equal as Jβ ⇒ ∞ .   
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This condition is necessary as well as sufficient, so any configuration 

such that 1
lp

b
=  for some subset of b choices and 0lp =  for the other 

L b−  choices is an equilibrium.  Hence, for the case where J = ∞ , there 

exist  

 

1
2 1

L
L

b

L
b=

 
= − 

 
∑  

 

different equilibrium probability configurations.   Recalling that β  indexes 

the density of random utility and J measures the strength of 

interdependence between decisions, this case, when contrasted with 

0Jβ =  illustrates why the strength of these interdependences and the 
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degree of heterogeneity in random utility interact to determine the 

number of equilibria. 

These extreme cases may be refined to produce a more precise 

characterization of the relationship between the number of equilibria and 

the value of Jβ .  

  

Theorem 1.  Multiple equilibria in the multinomial logit model with 
social interactions 
 
Suppose that individual choices are characterized by eq. (12) with self-

consistent beliefs, i.e., that beliefs are consistent with eq. (14)Assume 
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that ,  ,i lh k i l= ∀ . Then there will exist at least three self-consistent choice 

probabilities if 1J
L
β

> . 

 

 

 

When 2L = , this theorem reduces to the characterization of multiple 

equilibria with binary choices in Brock and Durlauf (2001a). 

 

I will exposit this model for comparison; note that the support of the 

choices is -1,1 

  87 



For the binary choice model, self-consistency means that 

 

 ( ), 2 1.e
i g g g g X gm m F k cX dY Jm dFε= = + + + −∫  (20) 

  

where recall that X gF  is the empirical within-group distribution of X .  The 

description of a process for individual choices combined with its 

associated self-consistency condition fully specifies a model.  

 

Precise results may be obtained if one specifies the functional forms for 

,X gF  and Fε .  For the binary case, 

 

 ( ) ( )
1

1 exp
F z

zε =
+ −

 (21) 
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 so that the model errors are as before negative exponentially distributed, 

and that i gk cX dY h+ + = , so that this component of the payoff 

differential between the two choices is constant across group members.   

 

For this special case, 

 

( ) ( )
( ) ( )

,

, ,

exp
Pr 1 , ,

exp exp

e
i g

i i g e e
i g i g

h Jm
X Y g

h Jm h Jm
ω

+
= =

+ + − −
 (22) 

 

Under self-consistency, the expected average choice level gm  within a 

group must obey 
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 ( )tanhg gm h Jm= +  (23) 

 

In (19), ( ) ( ) ( )
( ) ( )

exp exp
tanh

exp exp
x x

x
x x

− −
=

+ −
.   

 

For this case, one can show formally that if J H< , then the equilibria is 

unique whereas if J H>  there are three equilibria, of which only the two 

extremal equilibria (in terms of the magnitude of gm ) are stable under 

dynamic analogs of the model.   
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Comments 
 

1. There is an interplay of the degree of unobserved heterogeneity 

and the strength of social interactions that determines the number 

of equilibria. 

 

2. This is an example of a phase transition 

 

3. The threshold for multiplicity depends on the number of choices.  
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Multinomial Choice Under Alternative Error Assumptions 

 

The basic logic of the multinomial model is straightforward to generalize.  

This can be seen if one considers the preference structure 

 

 1
, , , ,

e
i l i l i l i lV h Jp β ε−= + +  (24) 
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This is the same preference structure we worked with earlier, except that 

β  is now explicitly used to index the intensity of choice (in the McFadden 

sense) rather than as a parameter of the distribution of the random 

payoff term ,i lε .   

 

We assume that these unobserved utility terms are independent and 

identically distributed with a common distribution function ( )Fε ⋅ . 
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For this model, the probability that agent i  makes choice l  is  

 

 
( ) ( )
( ) ( )

,0 , , ,0 , ,0

, 1 , , , 1 , , 1

,...,e e
i i l i l i i l i

e e
i L i l i l i L i l i L

h h J p p

h h J p p

ε ε β β
µ

ε ε β β− − −

 − ≤ − + −
 
 − ≤ − + − 

 (25) 
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Following Anderson, dePalma, and Thisse (1992, pg. 36), conditional on 

a realization of ,i lε , the probability that l  is chosen is 

 

 ( ), , , , ,
e e

i l i j i l i j i l
j i

F h h Jp Jpε β β β β ε
≠

− + − +∏  (26) 

 

which immediately implies that the probability of the choice l  without 

conditioning on the realization of ,i lε  is 

 

( ), , , , ,
e e

i l i l i j i l i j
j l

p F h h Jp Jp dFε εβ β β β ε
≠

= − + − +∏∫ .(27) 
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Eqs. (16)-(19) provide a multinomial choice model whose structure is 

fully analogous to the multinomial logit structure developed under 

parametric assumptions. Under self-consistency, the aggregate choice 

probabilities of this general multinomial choice model are the solutions to  

  

( )l l j l j h
j l

p F h h Jp Jp dF dFε εβ β β β ε
≠

= − + − +∏∫ ∫ (28) 

 

As in the multinomial logit case, the compound parameter Jβ  plays a 

critical role in determining the number of self-consistent equilibrium 

choice probabilities lp .  This finding is formalized in Theorem 2. 
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Theorem 2. Uniqueness versus multiplicity of self-consistent 
equilibria in multinomial choice models with social interactions  
 

Suppose that individual choices and associated self-consistent equilibria 

are described by (19)-(20).  Assume that , 0i lh =  ,i l∀  and ,i lε  are 

independent across i  and l . There exists a threshold T such that if 

J Tβ < , then there is a unique self-consistent equilibrium, whereas if 

J Tβ >  there exist at least three self-consistent equilibria. 
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The relationship between Jβ  and the number of equilibria is less precise 

than was found in Theorem 1, the multinomial logit case, as Theorem 3 

does not specify anything about the way in which L , the number of 

available choices, affects the number of equilibria.  This lack of precision 

is to be expected since we did not specify the distribution of the errors. 
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 Groups Choice and Behavior Choice 
 

Our analysis so far has treated groups as predetermined.  For contexts 

such as ethnicity or gender this is presumably appropriate.  

 

However, in other contexts, such as residential neighborhoods, group 

memberships are themselves presumably influenced by the presence of 

social interactions effects.  Hence a complete model of the role of social 

interactions on individual and group outcomes requires a joint description 

of both the process by which neighborhoods are formed and the 

subsequent behaviors they induce.   
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A Nested Choice Approach to Integration of Behaviors and Group 
Memberships 

 

A second approach to endogenizing group memberships may be 

developed using the nested logit framework originated by Ben Akiva 

(1973) and McFadden (1978).  The basic idea of this framework is the 

following.  An individual is assumed to make a joint decision of a group 

{0,... 1}g G∈ −  and a behavior {0,... 1}l L∈ − . We will denote the group 

choice of i  as iδ .   
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The structure of this joint decision is nested in the sense that the choices 

are assumed to have a structure that allows one to decompose the 

decisions as occurring in two stages: first, the group is chosen and then 

the behavior.   
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The key feature of this type of model is the assumption that choices at 

each stage obey a multinomial logit probability structure. For the 

behavioral choice, this means that 

 

( ) ( )
( )

, , , ,
, , , , 1

, , , ,
0

exp
, ,

exp

e
i l g i l ge

i i l g i l g i L
e

i l g i l g
j

h Jp
l h p g

h Jp

β
µ ω δ

β
−

=

+
= = =

+∑
(29) 

 

which is the same behavioral specification as before.  
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Group membership choices are somewhat more complicated. In the 

nested logit model, group choices are assumed to obey 

 

 ( ) ,
, , , ,

,

exp( )
, ,

exp( )
g i ge

i l g i l g
g i g

g

Z
i g h p l g

Z
β

µ
β

∈ ∀ =
∑

 (30) 

 

where 

 

 , , , , , , ,(max )e
i g l i l g i l g i l gZ E h Jp ε= + +  (31) 
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A standard result (e.g. Anderson, de Palma and Thisse (1992, pg. 46)) is 

that 

 

 
( )( )

( )

, , , , , , , , ,

1
, , , ,

max , ,

log exp

e e
i l g i l i l g i l g i l g

e
i l g i l g

l

E h Jp h p l g

h Jp

ε

β β−

+ + ∀ =

 + 
 
∑

 (32) 
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Combining equations, the joint group membership and behavior 

probabilities for an individual are thus described by  

 

 

( )

( )

( )

( )
( )

, , , ,

1
, , , ,

1
, , , ,

, , , ,
1

, , , ,
0

, , ,

exp log exp

exp log exp

exp

exp

e
i i i l n i l n

e
n i l n i l n

l

e
n i l n i l n

n l

e
i l n i l n

L
e

i l n i l n
j

l n h p l n

h Jp

h Jp

h Jp

h Jp

µ ω δ

β β β

β β β

β

β

−

−

−

=

= = ∀ =

  +  
   ⋅

  +  
  

+

+

∑

∑ ∑

∑  (33) 
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This probabilistic description may be faulted in that it is not directly 

derived from a utility maximization problem. In fact, a number of papers 

have identified conditions under which the probability structure is 

consistent with utility maximization, cf. McFadden (1978) and Borsch-

Supan (1990) for discussion. A simple condition (cf. Anderson, dePalma, 

and Thisse, 1992, pg. 48) that renders the model compatible with a well 

posed utility maximization problem is nβ β≤ , which in essence requires 

that the dispersion of random payoff terms across groups is lower than 

the dispersion in random payoff terms across behavioral choices within a 

group.  
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There has yet to be any analysis of models such as (36) when self-

consistency is imposed on the expected group choice percentages , ,
e
i l gp . 

Such an analysis should provide a number of interesting results. For 

example, a nested structure of this type introduces a new mechanism by 

which multiple equilibria may emerge, namely the influence of beliefs 

about group behaviors on group memberships, which reciprocally will 

affect behaviors.  This additional channel for social interactions, in turn, 

raises new identification questions. 

 

Comment: Existence may require membership “prices” 
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State of Literature 
 

 

1. Social interactions may be integrated into standard choice models in 

ways that preserve neoclassical reasoning, yet allow for phenomena 

such as multiple equilibria 

 

2. Much left to do, especially for nested choice generalizations that 

integrated group formation and behavior in groups. Social networks 

are even harder to integrate. 
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