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Appendix A Data Sources and Variable Creation

A.1 National Postsecondary Student Aid Study 2007–2008 (NPSAS)

The National Postsecondary Student Aid Study (NPSAS) is a nationally representative cross-
section of college students in the United States. The survey collects data from students on many
aspects of the college experience, with a particular focus on understanding how students pay
for college. A new wave of NPSAS is collected every three to four years. I use the 2008 wave
which surveyed students during the 2007–2008 school year. NPSAS collects information at the
student level from several different sources: government records, college administrative records,
third-party organizations (e.g. ACT and the College Board) and a student interview.

A.1.1 Raw Data

NPSAS is a restricted-use dataset obtained from the National Center for Education Statistics
(NCES). I obtained access to the data through a data use agreement which prohibits publishing
the data. The data comes in the form of several flat text files along with an electronic codebook.
The electronic codebook contains the data documentation and allows the user to select desired
variables. Once the user has selected the desired variables, the electronic codebook will produce
an SPSS script that will read in and format the data. From SPSS, the data can be saved in several
formats including Stata (.dta) format.

A.1.2 Variable Creation

Not all students attend college full-time for the full year. I define the number of full-time equiv-
alent months to be equal to the number of full-time months plus half of the number of half-time
months plus one-quarter of the number of less-than-half-time months.

The college selectivity variable used throughout the paper is based on a classification devel-
oped by the National Center for Education Statistics. The methodology is described in Appendix
E of Cunningham (2005). Colleges are assigned to selectivity categories based on a few char-
acteristics. Two-year colleges are put into their own category as are open admission four-year
colleges.

For non-open admission institutions, an index was created from two variables: 1) the
centile distribution of the percentage of students who were admitted (of those who
applied); and 2) the centile distribution of the midpoint between the 25th and 75th
percentile SAT/ACT combined scores reported by each institution (ACT scores were
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converted into SAT equivalents). The two variables were given equal weight for those
non-open admission institutions that had data for both, and the combined centile
variable was divided into selectivity categories—very selective, moderately selective,
and minimally selective—based on breaks in the distribution. Institutions that did
not have test score data (about 10 percent of non-open admission institutions) were
assigned to the selectivity categories using a combination of percent admitted and
whether they required test scores; institutions that did not require test scores were
assigned to the “minimally selective” category, while the remainder were assigned
according to the range of centiles of “percent admitted” in which they fell. (page E-1)

Appendix E—Institutional Selectivity 

 
 
 E-2 

types of selectivity measures such as Peterson’s Selectivity Ranking.29 The selectivity variable 

appeared to assign institutions to categories in ways that would be expected (table E-1). 

 

 
 
 
 
 

                                                 
29 From the 2001 Peterson’s Guide to Four-Year Colleges (Thomson Peterson’s 2001). The Peterson’s Ranking was available 
for 1,093 of the 1,569 4-year institutions in the study universe. All of the tests had significant Chi Squares and Pearson’s r 
values.  
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Table E-1.  Selected 4-year institutions in the study universe, by institutional selectivity

NOTE: Selected institutions are in no particular order.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Integrated Postsecondary Education Data 
System, Institutional Characteristics, Collection Year 2002.

Public institutions

Private not-for-profit institutions

Table 13: Selected 4-year Institutions, by Institutional Selectivity

Table E-1 from Cunningham (2005), reproduced here for reference, provides examples of the
types of colleges that fall into each selectivity category. I collapse the “Minimally Selective” and
“Open Admission” categories into a single category I label “Not Selective.”

I use the NPSAS variable TUITION2 as my measure of gross tuition or sticker price. Dis-
counts come from the institutional grants variable INGRTAMA. Transaction prices are simply
the difference between the sticker price and discount. I adjust all prices and discounts to be in
terms of 9 full-time equivalent months (those with less than 9 months were dropped, see below).

The number of additional colleges listed on the FAFSA comes from the NPSAS variables
C08100, C08102, C08104, C08106, C08108, C08110. For each student, I added up the number of
non-missing entries in these variables and subtracted one. The result was a number between 0
and 5. The variable was set to zero for students who did not complete the FAFSA. The variable
was set to missing for those who did complete the FAFSA but had no colleges listed (as a result,
these students were excluded from the analysis).

High school GPA was reported in ranges in the NPSAS variable HSGPA. Therefore I assigned
each student a high school GPA equal to the minimum of the range which she reported.

2



I collapsed the NPSAS variable RACE into five categories “white,” “black”, “Hispanic”,
“Asian”, and “other/multiple.”

A.1.3 Sample Selection

I applied the following sample selection criteria

• Undergraduates only

• Exclude students on athletic scholarship

• Exclude foreign students and those from Puerto Rico

• Exclude students who attended multiple colleges during the 2007–2008 school year

• Exclude students not enrolled in a degree program

• Exclude students who have already earned a bachelor’s degree

• Exclude students who received tuition waivers because of their parent’s employment at the
college

• Exclude students who had imputed tuition data from IPEDS

• Exclude students who completed a FAFSA but were missing FAFSA information

• Exclude students over age 30

• Exclude students who attended less than 9 full-time equivalent months

• Exclude colleges outside the 50 states plus Washington, D.C.

• Exclude for-profit colleges

• Exclude less-than-2-year colleges

• Exclude specialized colleges (but keep engineering and business schools)

• Exclude “special use” two-year colleges

In addition, there appears to be some misreporting of tuition prices. It seems that some colleges
reported net tuition when they were supposed to report gross tuition. I drop students at colleges
where the average transaction price (reported gross tuition minus institutional grants) is not
positive.

For most of the reduced form analysis, I further restrict the sample to dependent freshmen.
In some cases, I also restrict the analysis to students at elite or nonelite colleges.
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Colleges Students Colleges Students

All Colleges 1,110 6,780 490 2,300
Very Selective 180 1,120 180 1,120
Moderately Selective 440 2,570 240 960
Not Selective 160 920 60 220
Two-Year 330 2,170 0 0

Private 430 1,830 420 1,760
Very Selective 120 580 120 580
Moderately Selective 240 960 240 960
Not Selective 60 220 60 220
Two-Year 10 70 0 0

Public 690 4,960 70 540
Very Selective 70 540 70 540
Moderately Selective 190 1,610 0 0
Not Selective 100 710 0 0
Two-Year 320 2,100 0 0

Public, In-State --- 4,580 --- 490
Very Selective --- 490 --- 490
Moderately Selective --- 1,440 --- 0
Not Selective --- 650 --- 0
Two-Year --- 2,010 --- 0

Public, Out-Of-State --- 370 --- 50
Very Selective --- 50 --- 50
Moderately Selective --- 170 --- 0
Not Selective --- 60 --- 0
Two-Year --- 90 --- 0

Freshmen Sample Elite Sample

The elite sample consists of freshmen at private and very selective public four-year colleges. Each cell 
contains the raw count of the number of colleges and students in the sample. Per NCES requirements, 
counts have been rounded to the nearest ten.

SOURCE: U.S. Department of Education, National Center for Education Statistics, National 
Postsecondary Student Aid Study, 2008, and Beginning Postsecondary Students, 2004.

Table 14: Cell Counts
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A.2 Beginning Postsecondary Students 2003-2009 (BPS)

Beginning Postsecondary Students 2003–2009 is a panel dataset that follows first-time freshmen
that were sampled as part of the 2003 wave of NPSAS. Because BPS is derived from NPSAS,
it contains much of the same information. However, because it is focused on freshmen, it also
specifically asks about the number of colleges applied to (BPS variable APPS04) which I top-
coded at 10. The raw data, variable creation, and sample selection for BPS were identical to that
for NPSAS.

Appendix B Assumption on the Distribution of Match Surpluses

In Assumption 3.1, I assume that the cdf of the largest match surplus among a college’s competi-
tors G(·) satisfies

G(s)2 > G ′(s)
∫ s

0
G(y)dy ∀s ∈ S

Although this assumption is difficult to interpret on its own, in this section I offer two ways to
understand the restrictions that Assumption 3.1 imposes.

First, recall that β′(s|X) = (s− β(s|X))G
′(s|X)
G(s|X)

. Thus, Assumption 3.1 implies that

1 > (s− β(s|X))
G ′(s|X)

G(s|X)

⇒ 1 >
s− β(s|X)

s
× ∂ log(G(s|X))

∂ log(s)
(13)

The function G(s) gives the probability, in equilibrium, that a college with match surplus s wins
the auction. Equation (13) says that, in equilibrium, a bidder will respond to a marginal increase
in its match surplus by increasing its bid by the product of 1) its share of the match surplus, and
2) the elasticity of its probability of winning. The former is clearly less than one, but the latter
could be greater than one if the density of G suddenly spiked.1

Second, recall that in an independent private values setting the equilibrium bid function is
given by

β(s) = E[Y|Y < s]

where Y denotes the largest match surplus among the college’s competitors. That is, college j
bids the expected match surplus of the student’s next best option, conditional on j being the
winning bidder. So Assumption 3.1 is equivalent to requiring that

∂ E[Y|Y < s]
∂s

< 1

1A sudden spike in the density would cause G(s) to increase very quickly. But notice that β′ can only stay above 1
for a small region of the support of S, because once β(s) starts to approach s, the first term of (13) will approach zero
and the bid function will flatten out.
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In other words, the expected value of the truncated distribution of Y (truncated from the right
at s) must not increase more quickly than the truncation point. This could be violated if the
truncation point were just below a big spike in the density of Y. Then a one unit increase in s
could cause a greater than one unit increase in E[Y|Y < s].2 But in order for this to happen, the
density would need to spike rather quickly at s. A gradual increase in the density would not be
enough.

How restrictive is Assumption 3.1? That is, what type of distribution would violate this
assumption? By way of illustration, consider the beta distribution with support [0, 1]. If X ∼
Beta(α, β) and α = β, then the distribution of X is symmetric around 0.5. As α = β → ∞,
fX(0.5)→ ∞. That is, we can make the density at 0.5 arbitrarily large by increasing α and β. One
might think that, with a large enough value for α and β, we could cause the distribution to violate
Assumption 3.1. This turns out not to be the case. Rather, limα=β→∞

G ′(s)
G(s)2

∫ s
0 G(y)dy ≈ 0.64. This

example illustrates that, in order to violate Assumption 3.1, a large value for the density is
insufficient. We could cause a Beta distribution to violate Assumption 3.1 if we chose α and β

so that the pdf had an asymptote at y = 1. For instance, setting α = 5 and β = 0.5 gives a
distribution that violates Assumption 3.1 for values close to one (although the slope of the bid
function is less than one for nearly the entire support).

Appendix C Estimating Conditional Distributions

I employ the following method, described in detail in Fillmore (2017), to estimate conditional
distributions. The estimator is able to handle a large number of covariates while still allowing
for FB|X and fB|X to depend on X in a flexible way. I describe this method, quantile density
estimation, below.

To illustrate how quantile density estimation works in practice, suppose we want to estimate
the cdf FY and pdf fY of the random variable Y. Further, suppose that the support of Y is the
interval [y, y] with fY > 0 at all points in the support. Let {yi}N

i=1 denote a sample of size N
from the distribution. Consider a grid of points {pj} on the interval [0, 1] and define {qj} to be
the empirical quantiles of the sample that correspond to the percentiles {pj}. Now suppose we
plotted the qj on the horizontal axis and the pj on the vertical axis. We would simply be plotting
points from the empirical distribution function, and if the pj were dense enough we would trace
out the full step function.

The empirical cdf is an unbiased estimator of FY, but it is not smooth and, at least in its
raw form, is unsuitable for density estimation. The quantile density estimator fits a smooth
(twice continuously differentiable) monotone function F̂Y through the points {qj, pj} subject to the
constraints that F̂Y(y) = 0 and F̂Y(y) = 1. These two constraints, combined with monotonicity,
guarantee that F̂Y is a proper cdf and that its derivative, f̂Y, is a proper pdf.

2Such a spike would cause E[Y|Y < s] to increase quickly. But again, this can only be true for a small region of the
support of Y, because once E[Y|Y < s] starts to approach s, it must slow down.
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The quantile density estimator is calculated in two steps. First, a grid of percentiles is chosen
and for each one the conditional quantile is modeled as

QY(p|X) = X · βp p ∈ (0, 1)

and estimated via quantile regression. The function QY(p|X) gives the pth quantile of the ran-
dom variable Y, conditional on the values of the covariates X. Note that the coefficients βp are
indexed by p because a separate quantile regression is run for each value of p. Let Q̂Y(p|X) de-
note the fitted values for a given value of the covariates. Plotting the points

(
Q̂Y(p|X), p

)
would

trace out an estimate of the conditional cdf of Y. In the next step, the estimator fits a smooth
monotone curve through these points.

Ramsay (1998) considers the class of functions where log(F′) is differentiable and {log(F′)}′ =
F′′
F′ is Lebesgue square integrable, thus guaranteeing that F is monotone and that F′ is smooth
and bounded almost everywhere. All functions in this class can be expressed as the solution to
the second-order differential equation

F′′ = wF′

where w is a Lebesgue square integrable function. The solution to this ODE is simply

F(y) = C0 + C1

∫ y

y
exp

{∫ t

y
w(s)ds

}
dt y ∈ [y, y]

where C0 and C1 are constants. Since we are interested in functions that are valid cdf’s, these

constants must satisfy C0 = 0 and C1 =
[∫ y

y exp
{∫ t

y w(s)ds
}

dt
]−1

. For convenience define

W(t) =
∫ t

y w(s)ds. Thus, any cdf in this class of functions can be expressed in the form

F(y) =


0 if y < y∫ y

y exp{W(t)}dt∫ y
y exp{W(t)}dt

if y ∈ [y, y]

1 if y > y

(14)

with density

f (y) =


0 if y < y

exp{W(y)}∫ y
y exp{W(t)}dt

if y ∈ [y, y]

0 if y > y

(15)

where W(t) is continuous and differentiable almost everywhere and W(y) = 0.
The econometrician has a fair amount of freedom in specifying W(t). In the paper, I use a

cubic spline for the function W(t). In practice, specifying W(t) as a cubic spline seems to provide
a nice balance between flexibility and parsimony. The practical consequence of choosing a cubic
spline is to impose some additional smoothness on the pdf f (y). Other specifications for W(t)
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are possible, of course, as long as W(t) is continuous and differentiable almost everywhere.3

The method outlined here is semiparametric. The second step, fitting the smooth monotone
curve, is flexible enough to fit any monotone twice differentiable distribution function (Ramsay
1998). The first step, fitting the quantile regressions, can also be quite flexible, depending on how
one specifies the regressions. Thus, the flexibility of the method as a whole is really driven by the
flexibility of the quantile regression specification. However, note that even if we choose a linear
specification, as I do in the paper, the method still allows the vector of coefficients βp to differ for
each value of p.

Appendix D Potential Effects on Students’ Application Behavior

When simulating the counterfactuals, I hold students’ application behavior constant. However,
the estimates indicate that students would receive a larger share of the match surplus in each
counterfactual, which would strengthen their incentive to apply to more colleges. The expected
value of applying to college j′ if the student’s current best option is j can be written as

E[Value of Applying to j′|j] = P[sij′ > sij]×E[β(sij′)− β(sij)|sij′ > sij].

The first term, P[sij′ > sij], represents the probability that j′ beats j, while the second term,
E[β(sij′)− β(sij)|sij′ > sij], represents the expected marginal gain to the student in the event that
j′ beats j. Applying to one additional college only pays off if the college beats out the student’s
current best match. And if it does, the student will only receive a fraction of the additional match
surplus because the new college will extract much of it through price discrimination. Although
I do not directly model students’ application decisions, my estimates can speak to the incentives
students face when choosing how many applications to send out. In Table 15, I calculate the
expected return from applying to an additional college. In this calculation I make the (extreme)
assumption that student applications are independent of the match surplus. Thus, for each
student I assume P[sij′ > sij] = 1− FS|Xi

(sij). Then I multiply this probability by the conditional
expected utility bid increase (conditional on sij′ exceeding sij). This calculation indicates that
the expected return to applying to an additional college at random is $673. However, if, as
seems likely, students tend to apply to colleges that are a better match first, then P[sij′ > sij] <

1− FS|Xi
(sij) and the estimates in Table 15 will overstate the returns of an additional application.

I also recalculate the expected return from applying to an additional college (again assuming
applications are independent of match surplus) in each counterfactual. Because colleges are
bidding more aggressively, relative to baseline, the return to applying rises by between $93 and
$316, depending on the counterfactual. If students respond to these incentives by applying to
more colleges, then the increased competition will further lower prices as colleges are forced
to bid more aggressively for students. This suggests that the estimates in the paper might be

3Alternatives to the cubic spline include piecewise linear functions or polynomials. Ramsay (1998) chooses w(t) to
be a step function, implying that W(t) is a piecewise linear function.
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understating the full effects of restricting colleges’ use of FAFSA information.

Baseline 1 2 3 4 5
$673 $821 $868 $766 $900 $989

Parent income Yes Poverty Dum No Yes Poverty Dum No
Number of schools listed on FAFSA Yes Yes Yes No No No
Whether completed FAFSA Yes Yes Yes Yes No No

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Postsecondary Student Aid Study, 2008, and Beginning 
Postsecondary Students, 2004.

Avg return from an additional application

Counterfactual

Each cell reports the average return from applying to an additional college under each counterfactual. Returns represent the expected utility gain (in dollars) if 
the new college beats the student's current best option multiplied by the probability that this occurs. The returns were calculated under the assumptions that a) 
the number of colleges listed on the FAFSA remains fixed and b) students apply to colleges randomly. If, as seems likely, students tend to apply to colleges 
that are a better match first, these estimates provide an upper bound on the average returns to applying to an additional college. No sample weights were used.

FAFSA Information Available

Table 15: Average Return From Applying to an Additional College

Appendix E Simulating the Counterfactuals

In order to simulate the counterfactuals, I must estimate the forecast error terms ei and ξi. I use
the following procedure:

1. Regress v̂ij on student covariates Xi and store the fitted values v̂1
ij. Then regress v̂ij on X̃i,

the reduced set of student covariates, and store the fitted values v̂2
ij. Calculate ei = v̂1

ij − v̂2
ij.

2. Repeat step 1 for ŵij to estimate ξi = ŵ1
ij − ŵ2

ij.

3. Calculate s̃ij = ŝij − ei − ξi.

4. Estimate Fe and fe from the ei using the same method described in section C.

5. Estimate GS̃|X̃i
and gS̃|X̃i

from the s̃ij using the method from section C. Remember that this
is the distribution of winning (counterfactual) match surpluses.

6. Solve for FS̃|X̃i
and fS̃|X̃i

, the parent distribution of (counterfactual) match surpluses.

7. Solve for the counterfactual equilibrium bidding function, β̃(·|X̃i), using Equation (12) in
the paper.

8. Calculate the observed (to the college) winning bid, ũij = β̃(s̃ij|X̃i).

9. Calculate the true winning bid, ũij + ei. If ũij + ei < 0, then the student switches to a
nonelite college and receives zero utility. Otherwise, the student remains at her college and
pays a price equal to vij − (ũij + ei).

E.1 Using Lasso to choose a forecast model specification

In steps one and two above, I project student valuations on student covariates. In the paper, I do
this using OLS. In order to explore other regression specifications, I also used a Lasso approach.
The results are qualitatively the same with modest quantitative changes relative to the main
results in the paper.
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(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

$5,023 $5,023 $5,645 $5,567 $5,697 $5,596 $5,504 $5,442 $5,778 $5,735 $5,851 $5,779

$15,417 $15,417 $15,339 $15,348 $15,322 $15,330 $15,317 $15,354 $15,279 $15,308 $15,183 $15,264

Mean student share of surplus 30.1% 30.1% 37.5% 37.3% 37.7% 37.5% 36.7% 36.2% 38.3% 38.1% 38.4% 38.1%

Mean transaction price $13,158 $13,158 $13,066 $13,156 $13,024 $13,129 $13,305 $13,313 $13,040 $13,045 $13,088 $13,069

$622 $544 $673 $573 $481 $419 $755 $711 $827 $755

-$78 -$69 -$95 -$87 -$100 -$63 -$138 -$109 -$234 -$153

8.0% 6.9% 8.5% 7.5% 9.0% 7.5% 10.4% 9.3% 12.7% 10.5%

5.8% 5.8% 5.8% 5.8% 4.7% 4.7% 6.1% 6.2% 5.9% 6.0%

Mean change in transaction price -$684 -$594 -$748 -$633 -$540 -$462 -$860 -$800 -$986 -$869

Percent of students with price drop 71.6% 71.8% 71.3% 70.9% 80.1% 72.6% 75.6% 74.4% 68.2% 71.1%

-15.0% -17.0% -16.2% -17.2% -9.6% -11.9% -16.6% -18.6% -22.2% -23.5%

Consumer (student) surplus per student $0

Counterfactual
Baseline 1 2 3 4 5

Panel A. Levels
Consumer (student) surplus per student
Total surplus per student
Of those who remain at elite colleges:

Panel B. Changes Relative to Baseline

Parent income Yes

Total surplus per student $0

Percent of students who inefficiently 
choose a non-elite college

0.0%

Of those who remain at elite colleges:
Mean change in student share of 
surplus

0.0%

$0

0.0%

Within-college variance in price (in 
millions)

38.81

FAFSA Information Available
Poverty Dummy No Yes Poverty Dummy No

Subcolumn 1 contains the main estimates reported in Table 11.  Subcolumn 2 repeats the analysis in subcolumn 1 using a Lasso estimator (rather than OLS) to estimate e  and ξ  for the 
counterfactuals.
SOURCE: U.S. Department of Education, National Center for Education Statistics, National Postsecondary Student Aid Study, 2008, and Beginning Postsecondary Students, 2004.

No No
Whether completed FAFSA Yes Yes Yes Yes No No
Number of schools listed on FAFSA Yes Yes Yes No

Table 16: Comparing Counterfactual Estimates When Using Lasso to Estimate Forecast Errors e
and ξ

Appendix F Extensions of the Model

F.1 Conditionally Independent Private Values

The independent private values (IPV) paradigm is very popular in the empirical auctions litera-
ture, particularly in the case of first-price auctions. In a seminal contribution, Guerre et al. (2000)
showed, for first-price auctions in the IPV paradigm, how to derive a mapping between bids and
bidder valuations that not only provided a transparent proof of nonparametric identification,
but also suggested a simple and straightforward estimator. A productive line of research since
then has extended the approach of Guerre et al. (2000) to more general informational settings. I
think it is useful to quickly review how the IPV paradigm fits within the broader conditionally
independent private values (CIPV) paradigm.

The CIPV paradigm can be described in the following way. There are N bidders. Bidder i has
a private valuation si for the good.4 Product quality is captured by the random variable V ∼ FV .
The joint pdf of the private valuations and product quality is given by

fS,V(s1, . . . , sN , v) = fV(v)
N

∏
i=1

fS|V(si|v)

Conditional on product quality V, the bidder valuations are drawn independently from the
distribution FS|V . It is important to note that the CIPV paradigm is still within the private values

4Intuitively, bidder j’s valuation for the good is private if learning the valuations of its competitors would not
change j’s valuation.
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paradigm, so that bidder i’s payoff from receiving the good depends on si alone.5 Product quality,
V, introduces affiliation (a strong form of correlation) into the bidders’ private valuations, since
the distribution FS|V is a function of V.

There are roughly three ways that the literature has treated the random variable V. The first
approach assumes that V is observed to bidders and to the econometrician. I will refer to this
case as observed auction heterogeneity. In this case, all that is required for estimation is for the
econometrician to condition on V. For example, we can assume that product quality V depends
only on observed product characteristics Xi. Since the bidders and the econometrician observe
Xi, and hence V, they can both condition on V and treat the auction as though it is within the
IPV paradigm. This is the approach taken in “Price Discrimination and Public Policy in the
U.S. College Market.” Whether or not this approach works depends on whether the observed
characteristics Xi fully account for product quality.

A second assumption we can make is to assume that V is observed to bidders but not to the
econometrician. This is known as “unobserved auction heterogeneity” and can best be thought
of as an omitted variables problem. We would expect this to occur if bidders observe a dimension
of product quality that is unobserved to the econometrician. Unobserved auction heterogeneity
is an inherently econometric problem, not a modeling problem. In other words, if the econo-
metrician had better data, then we would be back to the case of observed auction heterogeneity
discussed above. Since the bidders can observe V and condition on it, from their perspective the
informational environment is still one of independent private values. It is the econometrician
who cannot observe V and will erroneously pool bids from auctions with different values of V
in his estimation.

Finally, a third assumption we can make is that bidders do not observe V, although they know
the distribution FV from which it is drawn as well as the conditional distribution FS|V . Since they
do not observe it and cannot condition on it, V introduces affiliation into their private valuations
which will affect equilibrium bidding behavior. Holding the number of bidders fixed, increasing
affiliation causes bidders to bid more aggressively. The intuition is that if my valuation is high it
is likely that my competitors’ valuations are also high, thereby intensifying competition between
bidders. However, affiliation also introduces an affiliation effect which causes bidders to shade
their bids as though they were subject to a winner’s curse.6 Holding constant the amount of
affiliation, adding another bidder may actually cause bidders to reduce their bids.

Because they are distinct issues, separate methods have been developed in the empirical auc-
tions literature to deal with observed auction heterogeneity, unobserved auction heterogeneity,
and affiliated private values. Below I discuss each issue separately and propose a strategy to
address each one in turn.

5In other words, V only affects bidder i’s valuation indirectly through its effect on si.
6To be clear, affiliation does not actually introduce a winner’s curse. The winner’s curse is a feature of the common

values paradigm, not the private values paradigm.
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F.2 Observed Auction Heterogeneity

The case of observed auction heterogeneity is the most straightforward. Whereas the estimator of
Guerre et al. (2000) simply requires estimation of the cdf and pdf of the bid distribution, FB and
fB, with observed auction heterogeneity we must estimate the cdf and pdf of the bid distribution
conditional on observable characteristics, FB|X and fB|X. In many applications in the literature,
researchers simply divide auctions into bins based on a small number of observed characteristics
X. Unfortunately, binning on covariates is empirically infeasible for even moderate numbers of
covariates. The same is true of more sophisticated nonparametric methods like kernel smoothing.
In section C, I provide more details about how I condition on student covariates.

F.3 Unobserved Auction Heterogeneity

Colleges do see things about students that are not observed to the econometrician. If these un-
observables are idiosyncratic to each school, then a private values framework is still justified.
Indeed, in the model I assume that colleges observe vij, the student’s valuation for the college,
which is not observed to the econometrician. However, if the unobservables (to the econometri-
cian) are observed to colleges and common across colleges, then this would introduce unobserved
auction heterogeneity. This heterogeneity would be a problem because it would cause bidder val-
uations (in my case, match surpluses) to be correlated. A common approach to this problem is
to use multiple bids to deal with unobserved auction heterogeneity, but in my application I only
have information on the winning bid.

To address unobserved auction heterogeneity, I adopt a similar approach to that of Roberts
(2013). Roberts argues that, if bidders can observe the unobserved (to the econometrician) prod-
uct characteristic, then it seems sensible that the seller could also observe the characteristic. He
assumes that sellers incorporate the characteristic into their choice of reserve price and uses
reserve prices to account for unobserved auction heterogeneity. Importantly, Roberts does not
assume that sellers set optimal reserve prices or that they incorporate the characteristic optimally.
He merely requires that reserve prices are a monotone function of the unobserved product char-
acteristic. In essence, the reserve price becomes a proxy for the unobserved product characteristic.
Roberts proves that, under these conditions, the IPV model in a first-price auction with unob-
served auction heterogeneity is identified with data on winning bids and reserve prices. Rather
than use reserve prices, which I do not have in my data, I use data on a student’s ex post col-
lege GPA. Following Roberts, I assume that college GPA is a function of both observed student
characteristics X and unobserved (to the econometrician) student quality χ. By observing the ex
post realization of college GPA, I can infer unobserved student quality and then condition on it
in estimation.

Of course, grades at different colleges may not be comparable. To deal with this possibility,
I begin by projecting college GPA into ACT units using the fitted values from the following
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regression
ACTij = βt(j)GPAij + µj + εij

where ACTij denotes student i’s ACT score, GPAij is student i’s GPA at college j, βt(j) is a
coefficient on GPA that varies with college j’s type,7 and µj is a college-specific fixed effect. The
fixed effects in this specification allow for the possibility that some colleges may have stricter
grading norms than other colleges. The specification also allows the coefficient on GPA to vary
across college types.8 Call the fitted values from this equation ĜPAi.

Now that I have projected college GPA onto a common scale, I estimate χi as the residual
from the following regression

ĜPAi = Xiδ + χi

where Xi are the observed student characteristics. Finally, I include χi as a conditioning covariate
when I estimate the model. Table 17 compares the results when controlling for unobserved
auction heterogeneity to those in the paper. Controlling for unobserved auction heterogeneity
does not affect the qualitative findings and has only a modest effect on the quantitative results.

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

$5,023 $5,113 $5,645 $5,687 $5,697 $5,730 $5,504 $5,555 $5,778 $5,794 $5,851 $5,889

$15,417 $15,457 $15,339 $15,379 $15,322 $15,349 $15,317 $15,376 $15,279 $15,313 $15,183 $15,211

Mean student share of surplus 30.1% 30.1% 37.5% 37.6% 37.7% 37.7% 36.7% 36.8% 38.3% 38.1% 38.4% 38.5%

Mean transaction price $13,158 $13,158 $13,066 $13,106 $13,024 $13,124 $13,305 $13,307 $13,040 $13,122 $13,088 $13,106

$622 $574 $673 $616 $481 $442 $755 $681 $827 $776

-$78 -$78 -$95 -$108 -$100 -$81 -$138 -$144 -$234 -$246

8.0% 8.2% 8.5% 9.3% 9.0% 8.3% 10.4% 10.7% 12.7% 13.0%

5.8% 5.7% 5.8% 5.6% 4.7% 4.8% 6.1% 5.8% 5.9% 5.8%

Mean change in transaction price -$684 -$635 -$748 -$695 -$540 -$490 -$860 -$783 -$986 -$935

Percent of students with price drop 71.6% 70.5% 71.3% 68.5% 80.1% 79.5% 75.6% 72.7% 68.2% 66.9%

-15.0% -14.7% -16.2% -16.5% -9.6% -8.4% -16.6% -16.0% -22.2% -22.7%

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Postsecondary Student Aid Study, 2008, and Beginning Postsecondary Students, 2004.

No
Subcolumn 1 contains the main estimates reported in Table 11.  Subcolumn 2 repeats the analysis in subcolumn 1 after using ex post  college GPA to control for unobserved auction heterogeneity.

Whether completed FAFSA Yes Yes Yes Yes No

Yes Poverty Dummy No
Number of schools listed on FAFSA Yes Yes Yes No No No

FAFSA Information Available
Parent income Yes Poverty Dummy No

Mean change in student share of 
surplus

0.0%

$0

0.0%

Within-college variance in price (in 
millions)

38.81

Total surplus per student $0

Percent of students who inefficiently 
choose a non-elite college

0.0%

Of those who remain at elite colleges:

Consumer (student) surplus per student
Total surplus per student
Of those who remain at elite colleges:

Consumer (student) surplus per student

Panel A. Levels

Panel B. Changes Relative to Baseline
$0

Counterfactual
Baseline 1 2 3 4 5

Table 17: Comparing Counterfactual Estimates When Controlling For Unobserved Auction Het-
erogeneity

F.4 Affiliated Private Values

What if there is a dimension of product quality that is unobserved by both the econometrician
and the bidders? In this case, the unobserved characteristic would introduce affiliation into the

7College types include Very Selective Public, Very Selective Private, Moderately Selective Private, and Not Selective
Private.

8Although I could, in principle, allow β to differ for each college, doing so would split the data rather thin.
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private valuations of the bidders, which would in turn alter equilibrium bidding behavior. Athey
and Haile (2002) prove that the joint distribution of bidder valuations in an affiliated private
value model is nonparametrically identified only if all bids in each auction are observed.9 Li
et al. (2002) extend the approach of Guerre et al. (2000) and construct a nonparametric estimator
of the APV model when all bids are observed. However, the need to observe all bids presents a
severe limitation on estimating this model in practice.

The results of Athey and Haile (2002) indicate that, without being able to observe all of
the bids, some parametric assumptions are unavoidable if we are going to make any progress.
Hubbard et al. (2012) report promising results using a semiparametric approach that employs
an Archimedean copulae. A copula is a function C : [0, 1]d → [0, 1] that is a proper CDF of d
random variables with uniform marginal distributions. In fact, Sklar’s Theorem tells us that any
joint distribution F (·) can be written as

F (X1, . . . , Xd) = C(F1(X1), . . . , Fd(Xd))

for some copula function C(·), where Fi is the marginal distribution of Xi. This means that the
copula representation is fully general. Moreover, copulae allow us to separate any joint dis-
tribution into the marginal distributions of the random variables and the dependence structure
between those random variables. Hubbard et al. (2012) propose estimating the marginal distribu-
tions of bidder values non-parametrically but placing parametric restrictions on the copula itself.
The approach of Hubbard et al. (2012) allows the econometrician to avoid parametric assump-
tions about the marginal distribution of bidder private valuations while imposing parametric
restrictions on the dependence (affiliation) of those valuations. In particular, they consider copu-
lae where the degree of affiliation is governed by a single parameter.10 Hubbard et al. (2012) find
that their semiparametric estimator performs well relative to the nonparametric estimator of Li
et al. (2002), even when the copula is misspecified.

F.4.1 The model with affiliation and a parametric copula

In this section, I extend the model from the paper to allow for affiliation in match surpluses with
a known affiliation parameter. College j is bidding on student i. Student i evaluates her offer
from college j using the utility function uij = vij − pij, where vij represents her valuation, in
dollars, of attending the college and pij is the price college j offers her. Elite colleges compete for
students on price. The college “wins” the auction—the student enrolls—if it makes the best offer,
u, as judged by the student. Colleges care about maximizing both the quality of their students as
well as tuition revenue. Let Π denote the space of college payoffs for enrolling a student. College
j’s payoff from enrolling student i is πij = wij + pij, where wij = zj + ω(Xi) + γIij represents

9However, it is possible to identify the joint distribution of the two highest private valuations using just the top
two bids.

10Their approach has the added benefit of imposing affiliation on the joint distribution, which is required to guar-
antee the existence of equilibrium.
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college j’s valuation, in dollars, of enrolling the student. The vector Xi denotes characteristics of
student i that are observed to both the college and the econometrician, while zj is observed to the
college only. Iij is an indicator equal to one if college j is public and student i is in-state. Note
that since wij is college j’s valuation, −wij is j’s willingness to accept. That is, −wij represents the
lowest price that the college would be willing to offer student i because charging her less than
−wij would give the college a negative payoff.

College j knows zj and learns vij and Xi, and by extension wij, during the application process,
but it does not know the v’s or w’s of the other bidders. It also does not know the number of
bidders, ni, but it does observe a noisy signal, ñi which is one of the elements of the vector Xi. It
also knows the probability of n bidders conditional on the characteristics of the student, ρ(n|X).

College j makes a take-it-or-leave-it price offer, pij, to student i to maximize its expected
surplus which is simply its payoff if it enrolls the student, πij, times the probability of enrolling
her

πij P[j wins] = (wij + pij)P[uij ≥ ui` ∀` 6= j|Xi].

Up to this point, we have been thinking about the college’s decision in terms of price offers.
However, if we recast the college’s problem in terms of utility bids, we can express the model
in a way that lends itself to empirical estimation. At this point it will be convenient to focus on
college j = 1. Define sij ≡ uij + πij = vij + wij to be the total surplus from matching student i
with college j. The joint distribution of match surpluses for exactly n bidders is given by

FS|Xi
(si1, . . . , sin|Xi) = C(n)(FS|X(si1|Xi), . . . , FS|X(sin|Xi))

where C(n) is the n-dimensional copula and FS|X(·) is the marginal distribution of match sur-
pluses.11 Note that C(n) takes n arguments, one for each bidder. Hubbard et al. (2012) prove that,
conditional on bidder 1’s match surplus, the distribution of its competitors’ surpluses is given by
the derivative of C(n) with respect to the first argument

FS−1|Si1,Xi
(si2, . . . , sin|si1, Xi) = C(n)1 (FS|X(si1|Xi), . . . , FS|X(sin|Xi))

Now we can rewrite college 1’s objective function as

{(vi1 + wi1)− (vi1 − pi1)}P[ui1 ≥ ui` ∀` > 1|Xi]

= (si1 − ui1)P[ui1 ≥ β(si`|Xi) ∀` > 1|Xi]

= (si1 − ui1)P[β−1(ui1|Xi) ≥ si` ∀` > 1|Xi]

= (si1 − ui1)

{
n

∑
n=1
FS−1|Si1

(β−1(ui1), . . . , β−1(ui1)|si1)ρ(n)

}

= (si1 − ui1)

{
n

∑
n=1
C(n)1

(
FS(si1), FS(β−1(ui1)), . . . , FS(β−1(ui1))

)
ρ(n)

}
. (16)

11Since bidders are symmetric, this marginal distribution does not vary across bidders.
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where for notational convenience we have suppressed the fact that the joint distribution FS, the
marginal distribution FS, the distribution of bidders ρ(n), and the equilibrium bid function β(s)
are all conditioned on observable covariates Xi. The marginal distribution of match surpluses
FS has support S = [s, s] (s ≤ 0 < s). As is standard in the auction literature, I assume that the
marginal density fS is strictly positive over the entire support.

Taking college 1’s first order condition, we get the first order condition

β′(s) = (s− β(s))
∑n

n=1 ρ(n)(n− 1) fS(s)C
(n)
12 (FS(s), . . . , FS(s))

∑n
n=1 ρ(n)C(n)

1 (FS(s), . . . , FS(s))
(17)

Note that the IPV model corresponds to the case where C(n)(y1, y2, . . . , yn) = ∏n
j=1 yj. In this

case, (17) reduces to equation (2) in the paper.
Define the college payoff function π(s) ≡ s − β(s), which gives the ex post college payoff

as a function of the total surplus s. Note that π(s) is monotone in s with π′(s) ∈ (0, 1) (since
β′(s) ∈ (0, 1)). Denote the distribution of college payoffs, π by Fπ. Now the derivative of the
payoff function π(s) is

π′(s) = 1− β′(s) = 1− (s− β(s))
∑n

n=1 ρ(n)(n− 1) fS(s)C
(n)
12 (FS(s), . . . , FS(s))

∑n
n=1 ρ(n)C(n)

1 (FS(s), . . . , FS(s))

⇒ ∑n
n=1 ρ(n)C(n)

1 (FS(s), . . . , FS(s))

∑n
n=1 ρ(n)(n− 1) fS(s)C

(n)
12 (FS(s), . . . , FS(s))

π′(s) =
∑n

n=1 ρ(n)C(n)
1 (FS(s), . . . , FS(s))

∑n
n=1 ρ(n)(n− 1) fS(s)C

(n)
12 (FS(s), . . . , FS(s))

− π(s)

⇒ π(s) =
∑n

n=1 ρ(n)C(n)
1 (Fπ(π(s)), . . . , Fπ(π(s)))

∑n
n=1 ρ(n)(n− 1) fπ(π(s))C(n)

12 (Fπ(π(s)), . . . , Fπ(π(s)))

(
1

π′(s)
− 1
)

. (18)

I have now rewritten π(s) in terms of the distribution of college payoffs rather than the surplus
distribution by using the fact that FS(s) = Fπ(π(s)) and therefore fπ(π(s)) = fS(s)

π′(s) . Solving (18)
for π′(s) gives

π′(s) =

(
1 + π(s)

∑n
n=1 ρ(n)(n− 1) fπ(π(s))C(n)

12 (Fπ(π(s)), . . . , Fπ(π(s)))

∑n
n=1 ρ(n)C(n)

1 (Fπ(π(s)), . . . , Fπ(π(s)))

)−1

, 0 ≤ s (19)

π(0|Xi) = 0. (20)

Notice that since π : S → Π is monotone its inverse ψ : Π → S exists and has a derivative that
is simply the reciprocal of π′. So we can write

ψ′(π) = 1 + π
∑n

n=1 ρ(n)(n− 1) fπ(π)C(n)
12 (Fπ(π), . . . , Fπ(π))

∑n
n=1 ρ(n)C(n)

1 (Fπ(π), . . . , Fπ(π))
0 ≤ π (21)

ψ(0) = 0. (22)

Finally, Equation (21) can be solved by simply integrating from 0 to π. ψ(π) is the equilibrium
inverse payoff function; it maps from the space of college payoffs, Π, to the space of match
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surpluses, S. ψ(π) depends only on the equilibrium marginal distribution of colleges payoffs,
Fπ, the copula C(·) and the distribution of potential bidders, ρ(n). Recall that we have suppressed
the fact that all of these distributions and function are conditioned on student covariates X.

If I observed all the payoffs for all of the bidders in the auction (or even just a random
sample of them), then I could estimate Fπ directly. However, I only observe the payoff for the
winning college, which is also the largest payoff among the invited bidders. Let Gπ(π) denote
the distribution of observed (winning) college payoffs. Then the marginal distribution function
Fπ and its density fπ are defined implicitly by

Gπ(π) =
n

∑
n=1

ρ(n)C(n)(Fπ(π), . . . , Fπ(π))

gπ(π) =
n

∑
n=1

ρ(n)n fπ(π)C(n)
1 (Fπ(π), . . . , Fπ(π))

With a known copula function and observed Gπ, gπ, and ρ(n), we can numerically solve for Fπ

and fπ. Then we plug these into (21) and proceed in a similar manner as in the paper.

F.4.2 Estimating the affiliation parameter

Unfortunately, the estimator of Hubbard et al. (2012) requires multiple bids at each auction. Their
idea is to use the rank correlation of bids to identify the rank correlation of bidder valuations.
Since I only observe the winning bid (really college payoff) for each auction, I instead leverage a
student’s (ex post) college GPA to estimate the affiliation parameter as follows. One aspect of the
Archimedean copulae employed by Hubbard et al. (2012) is that the affiliation parameter for two
random variables can be expressed as a function of Kendall’s-τ rank correlation between those
random variables. Since rank correlations are invariant to monotonic transformations, this means
that the rank correlation between college payoffs must be the same as the rank correlation be-
tween match surpluses. I infer unobserved student quality using ex post college GPA as described
in section F.3. Thus, I observe the distribution Fχ|X, which is the distribution of unobserved stu-
dent quality, conditional on observable student characteristics.12 Within the CIPV framework,
bidder valuations (in my case, match surpluses) are independent conditional on both observed
and unobserved student characteristics. Since college payoffs are a monotone function of match
surpluses, we can think of college payoffs as being distributed independently, conditional on χ

and X, according to some distribution Fπ|χ,X. Thus, for any fixed student characteristics X, we
can simulate multiple college payoffs from the same auction by first drawing a value of χ ∼ Fχ|X

12Since I observe the college payoff of the winning college (which is the largest payoff among all the bidding colleges)
and not a random college, I must make a correction to account for this fact. The distribution of winning college payoffs
is given by

Gπij |χi ,Xi
=

n

∑
n=1

Fπ|χ,X(πij|χi, Xi)
nρ(n|χi, Xi)

Given the observed distribution Gπij |χi ,Xi
and the probabilities ρ(n|χi, Xi), I numerically invert this expression to

calculate the parent distribution Fπ|χ,X(πij|χi, Xi).
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and then drawing a pair of college payoffs π1, π2
iid∼ Fπ|χ,X. Conditional only on observed stu-

dent characteristics X, π1 and π2 will be affiliated because of unobserved student quality χ. The
strength of the affiliation depends on the strength of the observed relationship between college
payoffs and χ. The stronger is the observed relationship between πij and χi, conditional on Xi,
then the stronger will be the implied affiliation between πij and πik. I simply simulate 10,000
draws of (χ, π1, π2) and calculate Kendall’s-τ rank correlation of π1 and π2.

I estimate a rank correlation of 0.026 between bidder match surpluses. This results from the
fact that, conditional on observed covariates X, unobserved student quality (as inferred from
freshmen GPA) is only weakly correlated with the college’s payoff πij. Put differently, observable
student characteristics X account for nearly all of the common component of student quality,
and once I condition on X, nearly all of the remaining variation in match surpluses is due to
idiosyncratic factors. Empirically, allowing for affiliated private values with a rank correlation of
0.026 does not produce substantially different results than assuming independent private values
(see Table 18).

A skeptical reader might be concerned that college GPA does not capture all of the unob-
served student quality. In order for this to be true, there must exist some other dimension of
student quality that is orthogonal to multiple measures of academic performance (ACT scores,
high school GPA, college GPA, AP exams). To explore this idea, I re-estimate the model by cal-
ibrating the rank correlation to 0.26 (ten times the value estimated in the data.) Even with a
rank correlation of 0.26, the qualitative results of the paper are unchanged and the quantitative
results change only modestly (see Table 18). In short, the data do not indicate a significant role
for affiliated private values, and even at moderate levels of affiliation, the qualitative findings of
the paper are unaffected.
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Baseline 1 2 3 4 5

$5,023 $5,645 $5,697 $5,504 $5,778 $5,851
$5,086 $5,706 $5,757 $5,563 $5,835 $5,903
$5,735 $6,328 $6,378 $6,154 $6,417 $6,456

$15,417 $15,339 $15,322 $15,317 $15,279 $15,183
$15,480 $15,402 $15,382 $15,380 $15,339 $15,248
$16,129 $16,046 $16,024 $16,005 $15,973 $15,864

Mean student share of surplus 30.1% 37.5% 37.7% 36.7% 38.3% 38.4%
30.2% 37.7% 37.8% 36.8% 38.5% 38.5%
32.2% 39.4% 39.5% 38.3% 39.7% 39.6%

Mean transaction price $13,158 $13,066 $13,024 $13,305 $13,040 $13,088
$13,158 $13,067 $13,025 $13,308 $13,046 $13,089
$13,158 $13,115 $13,068 $13,406 $13,143 $13,210

$0 $622 $673 $481 $755 $827
$0 $620 $670 $477 $748 $817
$0 $593 $643 $418 $682 $720

$0 -$78 -$95 -$100 -$138 -$234
$0 -$78 -$97 -$100 -$141 -$232
$0 -$83 -$105 -$123 -$156 -$265

0.0% 8.0% 8.5% 9.0% 10.4% 12.7%
0.0% 8.0% 8.5% 9.0% 10.5% 12.6%
0.0% 8.1% 8.8% 9.7% 10.9% 13.1%

0.0% 5.8% 5.8% 4.7% 6.1% 5.9%
0.0% 5.8% 5.8% 4.7% 6.0% 5.8%
0.0% 5.5% 5.5% 4.0% 5.2% 4.8%

$0 -$684 -$748 -$540 -$860 -$986
$0 -$683 -$745 -$536 -$854 -$973
$0 -$656 -$721 -$480 -$789 -$877

0.0% 71.6% 71.3% 80.1% 75.6% 68.2%
0.0% 71.6% 71.0% 79.6% 75.2% 67.9%
0.0% 70.6% 70.1% 73.6% 71.0% 64.7%

38.81 -15.0% -16.2% -9.6% -16.6% -22.2%
38.81 -14.9% -16.1% -9.6% -16.6% -22.2%
38.81 -14.4% -15.1% -9.2% -16.2% -22.0%

Yes Poverty Dum No Yes Poverty Dum No
Yes Yes Yes No No No
Yes Yes Yes Yes No No

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Postsecondary Student Aid Study, 2008, and 
Beginning Postsecondary Students, 2004.

Within-college variance in price 
(in millions)

FAFSA Information Available
Parent income
Number of schools listed on FAFSA
Whether completed FAFSA

Subrow 1 contains the main estimates reported in Table 11. In subrow 2, I estimate an affiliated private values model where the degree of 
affiliation is governed by a Frank copula with rank correlation estimated to be 0.026.  In subrow 3, I calibrate the degree of affiliation to a 
rank correlation of 0.26, ten times the rank correlation that is estimated.

Mean change in transaction price

Percent of students with price 
drop

Counterfactual

Total surplus per student

Of those who remain at elite colleges:

Panel A. Levels
Consumer (student) surplus per 
student

Total surplus per student

Percent of students who inefficiently 
choose a non-elite college

Of those who remain at elite colleges:
Mean change in student share of 
surplus

Panel B. Changes Relative to Baseline
Consumer (student) surplus per 
student

Table 18: Comparing Counterfactual Estimates When Allowing For Affiliation
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F.5 Alternative Estimates of a College’s Payoff

Recall that −wij is college j’s willingness to receive for student i. In equilibrium, a university’s
willingness to receive is given by the lower support of the distribution of transaction prices,
conditional on student covariates Xi. Unfortunately, although wij is nonparametrically identified,
the identification proof does not immediately suggest an estimator that could be used in a finite
data set. Therefore I adopt a parametric assumption about the distribution of p|X, j. I assume
that the left tail of the cdf Fp|X,j follows the quadratic parametric form in (9). I then estimate
several quantiles of the price distribution Fp|X,j using the quantile regression specification in
equation (10) at the quantiles q = .05, .10, . . . , .40. For each observation, I obtain the fitted values
from these quantile regressions, giving me eight (estimated) points on the left tail of Fp|X,j. Then,
separately for each observation, I fit the curve in (9) to these points via nonlinear least squares.

In this section I explore three alternative estimators for a college’s willingness to receive. First,
I estimate wij using a more flexible cubic specification

F̂p|X,j = α1(X, j)(p− p(X, j)) + α2(X, j)(p− p(X, j))2 + α3(X, j)(p− p(X, j))3

with α1, α2, α3 > 0. While the quadratic specification implies a linear PDF, the cubic specification
allows for some curvature in the PDF. Nevertheless, the cubic specification gives results that are
very similar to those from the quadratic specification (see Table 19). Second, I fit the quadratic
specification but this time to the quantiles q = .05, .10, . . . , .25. The idea is to fit a more local
approximation of the CDF near the left boundary of support. Again, the results do not change
dramatically from those in the paper (see Table 20). Finally, in the paper I allow college j’s
willingness to receive to vary with student characteristics, such as test scores, thus allowing for
some students to be more “desirable” than others to the college. But if colleges did not care
about student characteristics at all (i.e. they viewed all students as interchangeable), then college
j’s willingness to receive would be given by the lower bound of the support of prices among all
students at college j. Thus, as a third alternative estimator, I estimate each college’s willingness to
receive by taking the lowest transaction price observed at that college in the data. The results are
reported in Table 21. Using this estimator of willingness to receive, the counterfactual simulations
become significantly more dramatic. For example, transaction prices fall by up to 70 percent more
than in the results reported in the paper. In essence, this approach attributes all of the within-
college price variation to price discrimination, which naturally amplifies the consequences of
restricting the FAFSA information.
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(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

$5,023 $5,599 $5,645 $6,220 $5,697 $6,275 $5,504 $6,104 $5,778 $6,377 $5,851 $6,454

$15,417 $16,595 $15,339 $16,519 $15,322 $16,494 $15,317 $16,482 $15,279 $16,452 $15,183 $16,374

Mean student share of surplus 30.1% 30.6% 37.5% 37.8% 37.7% 38.2% 36.7% 37.3% 38.3% 38.8% 38.4% 38.8%

Mean transaction price $13,158 $13,158 $13,066 $13,076 $13,024 $13,047 $13,305 $13,333 $13,040 $13,068 $13,088 $13,039

$622 $620 $673 $676 $481 $505 $755 $778 $827 $855

-$78 -$76 -$95 -$101 -$100 -$113 -$138 -$143 -$234 -$221

8.0% 7.3% 8.5% 8.1% 9.0% 8.8% 10.4% 9.8% 12.7% 11.3%

5.8% 5.5% 5.8% 5.7% 4.7% 4.6% 6.1% 5.9% 5.9% 5.7%

Mean change in transaction price -$684 -$678 -$748 -$748 -$540 -$567 -$860 -$881 -$986 -$998

Percent of students with price drop 71.6% 72.6% 71.3% 70.1% 80.1% 78.2% 75.6% 75.4% 68.2% 68.2%

-15.0% -18.9% -16.2% -19.6% -9.6% -13.6% -16.6% -20.0% -22.2% -25.3%

No
Subcolumn 1 contains the main estimates reported in Table 11.  Subcolumn 2 repeats the analysis in subcolumn 1 except that it estimates a college's willingness-to-receive using a cubic specification, 
rather than a quadratic specification.
SOURCE: U.S. Department of Education, National Center for Education Statistics, National Postsecondary Student Aid Study, 2008, and Beginning Postsecondary Students, 2004.

Whether completed FAFSA Yes Yes Yes Yes No

Yes Poverty Dummy No
Number of schools listed on FAFSA Yes Yes Yes No No No

FAFSA Information Available
Parent income Yes Poverty Dummy No

Mean change in student share of 
surplus

0.0%

$0

0.0%

Within-college variance in price (in 
millions)

38.81

Total surplus per student $0

Percent of students who inefficiently 
choose a non-elite college

0.0%

Of those who remain at elite colleges:

Consumer (student) surplus per student
Total surplus per student
Of those who remain at elite colleges:

Consumer (student) surplus per student

Panel A. Levels

Panel B. Changes Relative to Baseline
$0

Counterfactual
Baseline 1 2 3 4 5

Table 19: Comparing Counterfactual Estimates Using a Cubic Specification to Estimate wij

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

$5,023 $5,557 $5,645 $6,236 $5,697 $6,301 $5,504 $6,048 $5,778 $6,367 $5,851 $6,477

$15,417 $16,882 $15,339 $16,801 $15,322 $16,762 $15,317 $16,770 $15,279 $16,730 $15,183 $16,624

Mean student share of surplus 30.1% 30.1% 37.5% 37.6% 37.7% 38.1% 36.7% 36.6% 38.3% 38.1% 38.4% 38.6%

Mean transaction price $13,158 $13,158 $13,066 $12,958 $13,024 $12,975 $13,305 $13,262 $13,040 $12,973 $13,088 $12,951

$622 $679 $673 $744 $481 $490 $755 $810 $827 $920

-$78 -$81 -$95 -$120 -$100 -$112 -$138 -$153 -$234 -$259

8.0% 7.4% 8.5% 8.6% 9.0% 8.6% 10.4% 10.0% 12.7% 12.4%

5.8% 5.7% 5.8% 6.0% 4.7% 4.5% 6.1% 5.8% 5.9% 5.9%

Mean change in transaction price -$684 -$741 -$748 -$830 -$540 -$550 -$860 -$921 -$986 -$1,092

Percent of students with price drop 71.6% 70.9% 71.3% 71.1% 80.1% 77.6% 75.6% 75.0% 68.2% 70.1%

-15.0% -13.2% -16.2% -14.4% -9.6% -6.7% -16.6% -14.1% -22.2% -20.1%

No
Subcolumn 1 contains the main estimates reported in Table 11.  Subcolumn 2 repeats the analysis in subcolumn 1 except that it estimates a college's willingness-to-receive using the left 25 percent of 
the distribution of transaction prices, rather than the left 40 percent.
SOURCE: U.S. Department of Education, National Center for Education Statistics, National Postsecondary Student Aid Study, 2008, and Beginning Postsecondary Students, 2004.

Whether completed FAFSA Yes Yes Yes Yes No

Yes Poverty Dummy No
Number of schools listed on FAFSA Yes Yes Yes No No No

FAFSA Information Available
Parent income Yes Poverty Dummy No

Mean change in student share of 
surplus

0.0%

$0

0.0%

Within-college variance in price (in 
millions)

38.81

Total surplus per student $0

Percent of students who inefficiently 
choose a non-elite college

0.0%

Of those who remain at elite colleges:

Consumer (student) surplus per student
Total surplus per student
Of those who remain at elite colleges:

Consumer (student) surplus per student

Panel A. Levels

Panel B. Changes Relative to Baseline
$0

Counterfactual
Baseline 1 2 3 4 5

Table 20: Comparing Counterfactual Estimates Using the Left 25 Percent of the Transaction Price
Distribution to Estimate wij
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(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

$5,023 $4,999 $5,645 $5,990 $5,697 $6,077 $5,504 $5,580 $5,778 $6,124 $5,851 $6,296

$15,417 $16,158 $15,339 $16,051 $15,322 $16,005 $15,317 $16,101 $15,279 $16,025 $15,183 $15,925

Mean student share of surplus 30.1% 27.2% 37.5% 36.9% 37.7% 37.7% 36.7% 34.0% 38.3% 37.6% 38.4% 38.6%

Mean transaction price $13,158 $13,158 $13,066 $13,328 $13,024 $13,305 $13,305 $13,680 $13,040 $13,234 $13,088 $13,120

$622 $991 $673 $1,078 $481 $581 $755 $1,125 $827 $1,297

-$78 -$107 -$95 -$153 -$100 -$58 -$138 -$133 -$234 -$233

8.0% 15.5% 8.5% 16.8% 9.0% 13.8% 10.4% 16.5% 12.7% 18.8%

5.8% 8.0% 5.8% 8.7% 4.7% 5.3% 6.1% 8.6% 5.9% 9.4%

Mean change in transaction price -$684 -$1,193 -$748 -$1,328 -$540 -$683 -$860 -$1,372 -$986 -$1,646

Percent of students with price drop 71.6% 78.1% 71.3% 78.1% 80.1% 88.9% 75.6% 83.1% 68.2% 78.1%

-15.0% -25.7% -16.2% -25.7% -9.6% -20.4% -16.6% -25.1% -22.2% -30.0%

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Postsecondary Student Aid Study, 2008, and Beginning Postsecondary Students, 2004.

Consumer (student) surplus per student
Total surplus per student
Of those who remain at elite colleges:

No
No
NoYes

$0

$0

Number of schools listed on FAFSA
Poverty DummyPoverty Dummy

Total surplus per student

Yes
NoYes

Consumer (student) surplus per student

Percent of students who inefficiently 
choose a non-elite college
Of those who remain at elite colleges:

Mean change in student share of 
surplus

0.0%

Within-college variance in price (in 
millions)

38.81

Subcolumn 1 contains the main estimates reported in Table 11.  Subcolumn 2 repeats the analysis in subcolumn 1 except that it estimates a college's willingness-to-receive by taking the minimum 
transaction price observed at that college.  Thus, a given college is assumed to have the same willingness-to-receive for all students.

Counterfactual
1 2 3 4 5

No
No

Parent income

Whether completed FAFSA Yes

FAFSA Information Available

Yes
Yes
Yes

Yes
Yes

No

Panel A. Levels

Panel B. Changes Relative to Baseline

Baseline

0.0%

$0

0.0%

Table 21: Comparing Counterfactual Estimates Using the Minimum Price Observed at College j
as an Estimate of wij

F.6 Treating the Number of Colleges Listed on the FAFSA as a Perfect Signal of
Potential BIdders

In the paper, I assumed that the number of colleges listed on the FAFSA was an imperfect
signal of the true number of potential bidders. In this section, I re-estimate the model under
the alternative assumption that the number of colleges listed on the FAFSA accurately reflects
the number of potential bidders. Table 22 contrasts these estimates with the main estimates in
the paper. In counterfactuals 3, 4, and 5, when colleges are restricted from using the number
of colleges listed on the FAFSA, I still assume that they can use other covariates to predict the
number of potential bidders. When the FAFSA perfectly reveals the number of competitors,
colleges are able to extract all of the surplus from students who list only one college on the
FAFSA because they know that they face no other competitors for those students. On the other
hand, when a student lists several colleges, bidders now know they must bid more aggressively
to attract the student. Assuming that the FAFSA perfectly reveals the number of competitors
primarily serves to magnify the effects I find in the paper.
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(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

$5,023 $4,845 $5,645 $5,462 $5,697 $5,486 $5,504 $5,752 $5,778 $5,952 $5,851 $5,972

$15,417 $15,239 $15,339 $15,143 $15,322 $15,064 $15,317 $15,023 $15,279 $15,005 $15,183 $14,851

Mean student share of surplus 30.1% 29.4% 37.5% 36.4% 37.7% 36.7% 36.7% 38.1% 38.3% 39.4% 38.4% 39.3%

Mean transaction price $13,158 $13,158 $13,066 $13,070 $13,024 $13,115 $13,305 $13,007 $13,040 $12,790 $13,088 $12,800

$622 $617 $673 $641 $481 $907 $755 $1,107 $827 $1,127

-$78 -$96 -$95 -$175 -$100 -$216 -$138 -$234 -$234 -$387

8.0% 7.8% 8.5% 9.3% 9.0% 12.6% 10.4% 12.8% 12.7% 15.6%

5.8% 6.2% 5.8% 6.0% 4.7% 7.1% 6.1% 8.1% 5.9% 7.4%

Mean change in transaction price -$684 -$673 -$748 -$711 -$540 -$1,064 -$860 -$1,288 -$986 -$1,373

Percent of students with price drop 71.6% 66.9% 71.3% 65.5% 80.1% 77.8% 75.6% 77.0% 68.2% 71.9%

-15.0% -16.4% -16.2% -18.4% -9.6% -11.7% -16.6% -17.5% -22.2% -25.9%

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Postsecondary Student Aid Study, 2008, and Beginning Postsecondary Students, 2004.

No
Subcolumn 1 contains the main estimates reported in Table 11.  Subcolumn 2 repeats the analysis in subcolumn 1 except that it assumes that the number of colleges listed on the FAFSA is identical to 
the number of potential bidders (colleges), rather than a noisy signal of the number of potential bidders.

Whether completed FAFSA Yes Yes Yes Yes No

Yes Poverty Dummy No
Number of schools listed on FAFSA Yes Yes Yes No No No

FAFSA Information Available
Parent income Yes Poverty Dummy No

Mean change in student share of 
surplus

0.0%

$0

0.0%

Within-college variance in price (in 
millions)

38.81

Total surplus per student $0

Percent of students who inefficiently 
choose a non-elite college

0.0%

Of those who remain at elite colleges:

Consumer (student) surplus per student
Total surplus per student
Of those who remain at elite colleges:

Consumer (student) surplus per student

Panel A. Levels

Panel B. Changes Relative to Baseline
$0

Counterfactual
Baseline 1 2 3 4 5

Table 22: Simulating Counterfactuals Assuming That the FAFSA Perfectly Reveals the Number
of Potential Bidders

F.7 Modeling College Spending by Incorporating Dynamics

When colleges price discriminate, they are able to earn more revenue than if they charged a uni-
form price. If the colleges invest this additional revenue into improving educational quality, then
price discrimination may directly improve the quality of education for all students (although as
Peña (2010) points out, the colleges may capture some of that increased consumer surplus by
raising prices). In this section, I generalize the model to explicitly incorporate both tuition rev-
enues and alumni giving. I show that adding these features to the model does not fundamentally
alter the college’s first order condition.

The model as presented in the paper is silent about how colleges use their tuition revenues.
Modeling college spending on quality is tricky. For instance, if I assume that colleges use to-
day’s revenues on today’s quality, then the problem becomes quite complicated, because a given
student’s demand for college j will depend on her beliefs about the classmates she will have—
wealthier classmates translate into more tuition revenue and thus a better education. But if I
adopt an alternative, and perhaps more realistic, timing assumption, then the model remains
tractable. I assume that colleges must purchase all of their quality inputs (faculty, facilities, etc.)
one period ahead. This timing assumption means that the quality of college j will not depend
on today’s tuition revenue. Rather, the college’s quality will depend on tuition revenue from last
period. Thus, a college’s quality is fixed and common knowledge when student i is considering
whether to attend.

There are a finite number I of student types indexed by i. Each type contains a mass of
students.13 Students live for two periods. In the first period, they decide which college to attend.

13Types i and i′ need not have the same mass of students. Furthermore, the mass of all student types combined
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In the second they make a donation to their alma mater. Let dij be the average donation made by
type i students to college j.

Colleges are infinitely lived. College j enters the period with a stock of quality Q, an en-
dowment E, and a set of alumni. Let aij denote the mass of type i alumni from college j. The
demand for college j among type i students is given by qij(pij; Q). Demand depends on both
the price offered by the college as well as the college’s quality. The college makes price offers to
each student type and collects its tuition revenue from the students that enroll. In addition, the
college receives a payoff of wij for each type i student that enrolls. wij represents the contribution
that type i students make on campus minus the direct costs of enrolling the student and the
opportunity costs of diverting resources away from other activities such as research. wij could be
positive or negative, depending on the student and college.

The college’s quality and endowment evolve according to the laws of motion

Q′ = (1− δ)Q +
Z
pz

(23)

E′ = (1 + r)

E− Z +
I

∑
i=1

(pij −mj + Sij)qij(pij; Q)︸ ︷︷ ︸
Tuition Revenue

+
I

∑
i=1

dijaij︸ ︷︷ ︸
Alumni Donations

 . (24)

δ is the depreciation rate on the stock of college quality. If all quality inputs must be repurchased
every year, then δ will be one, but if some quality inputs behave more like capital, then δ will
be less than one. Z represents the college’s investment in quality (in dollars), and pz is the
price of those investments. r is the interest rate earned on the endowment. mj represents per-
student instructional costs. Sij represents a per-student subsidy that the college receives, and is
probably most relevant for public colleges if state governments tie appropriations to enrollment
levels—especially in-state enrollment.

In order to keep things simple, I will assume that Z is chosen by an external group called
the Board of Trustees, and the college takes Z as given when it makes its price offers. This
assumption is relatively innocuous because I will be focusing on the steady state of the model,
where Z would not differ even if it were chosen by the college.

As mentioned above, the college receives a (possibly negative) payoff wij for each student it
enrolls. It also receives payoff g(Q) from having quality Q. The function g is increasing and
concave. The Bellman equation for college j is

V(Q, E, a1j, . . . , aI j) = max
{pij}

I

∑
i=1

wijqij(pij; Q) + g(Q) + βV
(
Q′, E′, q1j(p1j; Q), . . . , qI j(pI j; Q)

)
,

need not be one, although it could easily be normalized to one.
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subject to the laws of motion (23) and (24). In the steady state, Q′ = Q and E′ = E so that

Zss =
r

1 + r
Ess +

I

∑
i=1

(pij −mj + Sij)qij(pij; Qss) +
I

∑
i=1

dijaij.

That is, in the steady state the college invests all of its tuition revenue and alumni donations,
along with any interest income, into college quality. The first order condition with respect to pij

for a college in the steady state is

0 = wijq′ij(pij; Q) +
1
pz

βVQ ×
(
(pij −mj + Sij)q′ij(pij; Q) + qij(pij; Q)

)
+ βVaij q

′
ij(pij; Q),

which can be simplified to

pij = pz
−wij − βVaij

βVQ
+ mj − Sij +

qij(pij; Q)

q′ij(pij; Q)
.

Substituting in the Euler condition Vaij =
1
pz

βVQdij and using the fact that we are in the steady
state (so that VQ is the same every period), we get

pij = mj − pz
wij

βVQ
− βdij − Sij︸ ︷︷ ︸

cij

+
qij(pij; Q)

q′ij(pij; Q)︸ ︷︷ ︸
mij

.

Note that this first order condition for the college has the same form as in the static model.14

The only difference is in the components of the willingness to receive term cij. Willingness to
receive is now given by per-student instructional costs minus i) a term capturing the payoff to
the college of enrolling the student wij, ii) the net present value of a student’s alumni giving,
and iii) any per-student subsidy the college receives for enrolling the student (probably most
relevant for in-state students at public colleges). The college has a lower willingness to receive—
it is willing to charge less—for students who are expected to make larger future donations or
who represent a larger per-student subsidy to the college. At colleges with a higher marginal
value of quality, willingness to receive will be less sensitive to the college’s payoff wij. Intuitively,
if a college desperately needs money to invest in quality improvements, then it can’t afford to
be picky about the types of students it enrolls and will be willing to charge a low price to any
student as long as the total dollar revenue pij + βdij + Sij from the student remains greater than
instructional costs mij.

In this section, I have extended the model to incorporate tuition revenues as well as alumni
giving. Both of these features affect the college’s pricing decision by altering the components of
the college’s willingness to receive term cij. The net present value of future donations directly

14qij is analogous to P[i chooses j], and the first order conditions from the static model in the paper and the dynamic
model presented here have the same form, (p− c)q′ = q.
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lowers cij. In the steady state, tuition revenues are spent entirely on college quality, and the
marginal value (to the college) of quality shows up in the denominator of pz

−wij
βVQ

. The takeaway
lesson here is that alumni giving and tuition revenues both alter the components of cij but do not
alter the way it is estimated. In any case, cij can always be interpreted as the lowest price college
j is willing to receive from students of type i.
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