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I. Introduction

Many households own almost nothing but their human capital. Moreover, there is strong

evidence that human capital investment is risky, but consumption insurance against this risk

is far from complete. More precisely, a significant fraction of labor income is the return to

human capital investment, and a voluminous empirical literature has shown that individual

households face large and highly persistent labor income shocks that have strong effects

on individual consumption. In this paper, we argue that one financial friction, limited

contract enforcement, has the potential to explain a substantial part of the observed lack

of consumption insurance as an endogenous outcome. Intuitively, in equilibrium households

with high human capital returns and little financial wealth would like to borrow in order

to buy insurance and invest in human capital, but they cannot do so because of borrowing

constraints that arise endogenously due to the limited enforceability of credit contracts.

Our analysis proceeds in two steps. In a first step, we develop a tractable human capital

model with limited contract enforcement and provide a useful equilibrium characterization

result. In a second step, we use a calibrated version of the model to address the following

question: Can a reasonably calibrated macro model with physical capital, human capital

and limited contract enforcement explain a substantial fraction of the observed lack of con-

sumption insurance? In this paper, we show that the answer to this question is “yes”.

The model developed in this paper is a version of the type of human capital model that

has been popular in the endogenous growth literature. More specifically, we consider a

production economy with an aggregate constant-returns-to-scale production function using

physical and human capital as input factors. There are a large number (a continuum) of in-

dividual households with CRRA-preferences who can invest in risk-free physical capital and

risky human capital. Human capital investment is risky due to shocks to the stock of human

capital that follow a stationary Markov process with finite support (Markov chain). In the
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main part of the paper, we assume that all shocks are idiosyncratic, but we also discuss how

our theoretical characterization result can be extended to the case in which idiosyncratic and

aggregate shocks co-exists. Households have access to a complete set of credit and insur-

ance contracts, but their ability to use the available financial instruments is limited by the

possibility of default (endogenous borrowing/short-sale constraints). Defaulting households

continue to participate in the labor market (non-pledgeability of human capital), but are

excluded from financial markets until a stochastically determined future date.

Our general characterization result for recursive equilibria is based on the property that

individual consumption policy functions are linear in total wealth (financial plus human) and

individual portfolio choices are independent of wealth. Using this linearity result, we show

that recursive equilibria can be found by solving a fixed-point problem that is independent

of the wealth distribution. Moreover, the maximization problem of individual households is

shown to be convex so that a simple FOC-approach is applicable. In short, a rather complex,

infinite-dimensional fixed-point problem has been transformed into a relatively simple, finite-

dimensional fixed-point problem. Indeed, in many applications, including the one we present

in this paper, the equilibrium problem is reduced to a low-dimensional fixed-point problem

that can be solved numerically at very low computational cost.

In the quantitative part of the paper, we consider a version of the model with i.i.d. human

capital shocks and three age-groups: young households (age 21-40), middle-aged households

(age 41-60), and old households (age 61-80). Household age affects expected human capital

returns. We identify these returns by requiring the model to match the empirical life-cycle

profile of earnings, and the implied human capital returns are in line with the estimates of

the empirical literature. The calibrated model is also consistent with the empirical evidence

on human capital risk. Specifically, in our model, i.i.d. shocks to the stock of human

capital translate into a labor income process that follows a logarithmic random walk, that
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is, labor income shocks are permanent. The random-walk specification has often been used

in the empirical literature to model the permanent component of labor income risk, and

we use the estimates obtained by this literature to calibrate our model economy. For the

baseline calibration, we use a degree of relative risk aversion of 1 (log-utility) and a level of

contract enforcement (exclusion from financial markets in case of default) in line with the

US bankruptcy code. The results of our quantitative analysis can be summarized as follows.

First, according to our baseline calibration, young households (age group 21-40) are

substantially underinsured. Specifically, young households cannot borrow freely and only

insure 43 percent of human capital risk even though insurance markets exist and are perfectly

competitive. Further, the welfare consequences of the lack of consumption insurance are

severe: the welfare of young households would increase by 3.5 percent of lifetime consumption

if they had unlimited access to financial markets. Second, even though realistic variations in

the model parameters have non-negligible effects on equilibrium insurance and welfare, the

main result that young households are severely underinsured is robust such variations.

In sum, this paper makes a methodological contribution and a substantive contributions.

Theoretically, we develop a general framework and prove a characterization result for recur-

sive equilibria that provides a powerful tool for the quantitative analysis of a wide range

of interesting macroeconomic issues. Economically, we show that, contrary to the results

obtained by most of the previous literature, limited contract enforcement can explain the

observed lack of consumption insurance for a large group of households.

Literature This paper builds on the large literature on limited commitment/enforcement.

See, for example, Alvarez and Jermann (2000), Kehoe and Levine (1993), Kocherlakota

(1996), and Thomas and Worrall (1988) for seminal theoretical contributions and Krueger

and Perri (2006) and Ligon, Thomas, and Worrall (2002) for highly influential quantitative

work. Our theoretical contribution is to develop a tractable model with human capital ac-
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cumulation and to show how to avoid the non-convexity problem that often arises in limited

enforcement models with production.1 Our substantive contribution is to show that a cali-

brated macro model with capital and limited contract enforcement generates a substantial

degree of underinsurance. In contrast, the previous literature did not consider life-cycle

variations in earnings and human capital investment decisions, and found that consump-

tion insurance is almost perfect in calibrated models with physical capital (Cordoba, 2004,

and Krueger and Perri, 2006).2 In the models used by the previous li models, there is lit-

tle reason for households to borrow so that enforcement constraints do not bind often and

consumption insurance is high. Finally, we share with Andolfatto and Gervais (2006) and

Lochner and Monge (2011) the focus on human capital accumulation and endogenous bor-

rowing constraints due to enforcement problems, but we go beyond their work by studying

the interaction between borrowing constraints and insurance.

The current paper is most closely related to Krebs, Kuhn, and Wright (2015), who pro-

vide evidence from the life insurance market that human capital returns and insurance are

negatively correlated. Krebs, Kuhn, and Wright (2015) also conduct a quantitative analysis

of under-insurance based on a calibrated macro model similar to the one studied here. The

current analysis goes beyond Krebs, Kuhn, and Wright (2015) in two important dimensions.

First, the theoretical results derived in the current paper covers the case of general CRRA-

preferences, non-steady state behavior, and aggregate risk. In contrast, Krebs, Kuhn, and

Wright (2015) confine attention to steady state equilibria in economies with log-preferences

and no aggregate risk. Second, in the current paper we provide a comprehensive study of

the conditions that generate non-negligible under-insurance in calibrated models with limited

1Wright (2001) has shown how to circumvent the non-convexity issue in linear production models (AK-
model) with limited enforcement. The model structure we use in this paper is based on the human capital
model with incomplete markets analyzed in Krebs (2003).

2Krueger and Perri (2006) match the cross-sectional distribution of consumption fairly well, but the
implied volatility of individual consumption is negligible in their model.
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enforcement and risky human capital investment.

Our paper is also related to the voluminous literature on macroeconomic models with

exogenously incomplete markets, and in particular studies of human capital accumulation

(Krebs, 2003, Guvenen, Kuruscu, and Ozkan, 2011, and Huggett, Ventura, and Yaron,

2011). The current paper and Krebs, Kuhn, and Wright (2015) are complementary to the

incomplete-market literature on human capital investment in the sense that they address

similar issues from different angles. Specifically, the incomplete-market approach studies

the effect of human capital risk on investment/saving and consumption behavior when no

insurance beyond self-insurance is available. In contrast, the limited-enforcement approach

analyzes the effect of human capital risk on investment/saving and consumption behavior

when insurance markets are available, but endogenous borrowing constraints due to limited

contract enforcement generate under-insurance.

II. Model

In this section, we develop the model and define the relevant equilibrium concept.

a) Goods Production and Firms

Time is discrete and indexed by t = 0, 1, . . .. There is one all-purpose good that can be

consumed or used for investment purposes. Production of this good is undertaken by a

representative firm that rents capital and labor in competitive markets and uses these input

factors to produce output, Yt, according to the aggregate production function Yt = F (Kt,Ht).

Here Kt is the aggregate stock of physical capital and Ht is the aggregate level of efficiency-

weighted human capital employed by the firm.

The aggregate production function, F , is a standard neoclassical production function,

that is, it has constant-returns-to-scale, satisfies a Inada condition, and is continuous, con-
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cave, and strictly increasing in each argument. Given these assumptions on F , the im-

plied intensive-form production function, f(K̃) = F (K̃, 1), is continuous, strictly increasing,

strictly concave, and satisfies a corresponding Inada condition, where we introduced the

”capital-to-labor ratio” K̃ = K/H. Given the assumption of perfectly competitive labor

and capital markets, profit maximization implies

r̃kt = f ′(K̃t) (1)

r̃ht = f(K̃t) + f ′(K̃t)K̃t ,

where r̃k is the rental rate of physical capital and r̃h is the rental rate of human capital.

Note that r̃h is simply the wage rate per unit of human capital. Clearly, (1) defines rental

rates as functions of the capital to labor ratio: r̃k = r̃k(K̃) and r̃h = r̃h(K̃).

b) Capital Accumulation and Aggregate Resource Constraint

One unit of the all-purpose good can be transformed into one unit of physical capital. The

accumulation equation for the aggregate stock of physical capital is

Kt+1 = (1 − δk)Kt + Xkt , (2)

where δk is the depreciation rate of physical capital and Xkt is investment in physical capital.

Production of human capital is undertaken at the household level. There is a continuum

of infinitely-lived households of unit mass and each household can transform one unit of

the all-purpose good into φ units of human capital. The accumulation equation for human

capital, h, of an individual household is given by

ht+1 = (1 + ε(st)) ht + φxht , (3)

where xht is human capital investment of the individual household in period t and st is

the exogenous state of the individual household in period t. We assume that {st} fol-

lows a Markov shock process and that st takes on a finite number of possible values.
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We denote by st = (s1, . . . , st) the history of individual states st up to period t and let

π(st) = π(st|st−1) . . . π(s2|s1) stand for the probability that st occurs.

In line with Jones and Manuelli (1990) and Rebelo (1991), the human capital accumu-

lation equation (3) focuses on the (direct) resource cost of human capital production. In

contrast, Lucas (1988) and more recently Huggett et al. (2011) and Lochner and Monge

(2011) assume that the only cost of human capital production is a time cost. As suggested

by Ben-Porath (1967) and Trostel (1995), in many applications both resource cost and time

cost are important components of the total cost of human capital production. It is straight-

forward to extend our model to the case that allows for both goods cost and time cost of

human capital production.

The term ε in (3) captures deterministic and random changes in human capital that

are due to depreciation, learning by doing, and various shocks to human capital (skills) of

households. For example, a negative human capital shock could can occur when a household

member loses firm- or sector-specific human capital subsequent to job termination (worker

displacement). A decline in health (disability) or death of a household member provide

further examples of negative human capital shocks. In this case, both general and specific

human capital are lost. Internal promotions and upward movement in the labor market

provide two examples of positive human capital shock.

In the quantitative example considered in Section IV, we assume that the individual

state has two components, st = (s1t, s2t). The first component, s1t, determines household

age and the second component, s2t, represents human capital shocks capturing labor market

risk. We further assume ε(s1t, s2t) = ϕ(s1t)− δh + η(s2t). We interpret δh > 0 as the general

depreciation of human capital and ϕ(s1) > 0 as learning-by-doing that depends on household

age s1.
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The aggregate resource constraint states that total output produced is equal to aggregate

consumption plus aggregate investment (in physical and human capital):

Yt = Ct + Xkt + Xht (4)

where Yt = F (Kt,Ht), Ct = E[ct], Xht = E[xht], and Ht = E[ztht]. Here zt = z(st) is variable

that measures the productivity/efficiency of the human capital of an individual household

in period t.

c) Household Budget Constraint

In each period, households can buy and sell a (sequentially) complete set of financial contracts

(assets) with state-contingent payoffs, and we assume that for each state s there is one

contract (Arrow security). We denote by at+1(st+1) the quantity bought in period t (sold if

negative) of the contract that pays off one unit of the good in period t + 1 if st+1 occurs. A

budget-feasible plan has to satisfy the sequential budget constraint

r̃htz(st)ht + at(st) = ct + xht +
∑

st+1

at+1(st+1)qt(st+1)

ht+1 = (1 + ε(st))ht + φxht (5)

ht+1 +
∑

st+1

at+1(st+1)qt(st+1) ≥ 0

ct ≥ 0 , ht+1 ≥ 0

where qt(st+1) is the price of a financial contract that pays off if st+1 occurs. Note that the

first inequality in (5) requires total wealth (human plus financial) to be non-negative. In our

setting, this constraint is sufficient to rule out Ponzi-schemes.

An individual household begins life in period t = 0 with an initial endowment (a0, h0).

The initial state of an individual household is a vector (a0, h0, s0). Given the initial state

(a0, h0, s0), the household chooses a plan {ct, at, ht}, where each plan is a sequence of func-

tions mapping histories, st, into actions, ct(s
t), at+1(s

t, .), and ht+1(s
t). Note that all house-
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hold level equations have to hold in realizations, that is, they have to hold for all histories,

st.

d) Preferences

Households are infinitely-lived and have identical preferences over consumption plans. House-

holds are risk-averse and their preferences allow for a time-additive expected utility repre-

sentation:3

U ({ct}|s0)
.
= E

[ ∞∑

t=0

βtu(ct)|s0

]
, (6)

where the expectations in (6) is taken over all histories, st, keeping the initial type, s0,

fixed. We assume that the one-period utility function exhibits constant relative risk aversion:

u(c) = c1−γ

1−γ
for γ 6= 1 and u(c) = lnc otherwise. In other words, we assume that preferences

are homothetic.

e) Participation/Enforcement Constraint

We confine attention to equilibria in which households have no incentive to default. Thus,

households have to satisfy the sequential enforcement (participation) constraint, that is, for

all t and all st we have:

E

[ ∞∑

n=0

βnu(ct+n)|st

]
≥ Vd(ht(s

t−1), st) (7)

where Vd is the continuation value of a household who decides to default in period t. This

default value is determined as follows.

We assume that upon default all debts of the household are canceled and all financial

assets seized so that at(st) = 0. Following default, households are excluded from purchasing

insurance contracts and borrowing (going short). We assume that exclusion continues until a

stochastically determined future date that occurs with probability (1−p) in each period; that

3The notation E [
∑∞

t=0 βtu(ct)|s0] stands for
∑

st

∑∞
t=0 βtu(ct(st))π(st|s0).
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is, the probability of remaining in (financial) autarky is p. Following a default, households

retain their human capital and continue to earn the wage rate rh per unit of human capital. In

addition, they can still invest in human capital. After regaining access to financial markets,

the households expected continuation value is V e, which depends on h and s at the time of

exiting default (a = 0 at that point in time). For the individual household the function V e is

taken as given, but we close the model and determine this function endogenously by requiring

that V e = V , where V is the equilibrium value function associated with the maximization

problem of a household who participates in financial markets.4

In sum, Vd is the value function associated with the following household maximization

problem

Vd(ht, st) = max
{ct+n,ht+n|ht,st}

{
E

[ ∞∑

n=0

(pβ)nu(ct+n)|ht, st

]
+ β(1 − p)E

[ ∞∑

n=1

(1 − pn)βnV e
t+n(ht+n, st+n)|ht, st

]}

where the continuation plan {ct+n, ht+n|ht, st} has to satisfy the sequential budget constraint

r̃h,t+nz(st+n)ht+n = ct+n + xh,t+n

ht+n+1 = (1 + ε(st+n))ht+n + φxh,t+n (8)

ct+n ≥ 0 , ht+n+1 ≥ 0

f) Household Decision Problem

The initial state of an individual household, which defines the household type, is the vector

(a0, h0, s0). For given initial state, a household chooses a plan {ct, at, ht}. The set of budget

4The previous literature has usually assumed p = 1 (permanent autarky). See, however, Krueger and
Uhlig (2006) for a model with p = 0 following a similar approach to ours. Note also that the credit (default)
history of an individual household is not a state variable affecting the expected value function, V e; we assume
that the credit (default) history of households is information that cannot be used for contracting purposes.
This is in keeping with the U.S. bankruptcy code which limits the history of past behavior that can be
retained in credit reports.
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feasible household plans is defined as

B(a0, h0, s0)
.
= { {ct, at, ht} | {ct, at, ht} satisfies (3), (5), and (7)} (9)

The decision problem of a household of type (a0, h0, s0) is

max
{ct,at,ht}

U ({ct}|s0) (10)

s.t. {ct, at, ht} ∈ B(a0, h0, s0)

g) Equilibrium

We confine attention to equilibria in which financial contracts are priced in a risk-neutral

manner,

qt(st+1) =
π(st+1|st)

1 + rft
, (11)

where rf is the interest rate on financial transactions, which is equal to the return on physical

capital investment, rft = r̃kt−δk. The pricing equation (11) can be interpreted as a zero-profit

condition. More precisely, consider financial intermediaries that sell insurance contracts to

individual households and invest the proceeds in the risk-free asset that can be created from

the complete set of financial contracts and yields a certain return rf . Given that financial

intermediaries face linear investment opportunities and assuming no quantity restrictions

on the trading of financial contracts for financial intermediaries, equilibrium requires that

financial intermediaries make zero profit, namely condition (11).

Market clearing requires that the aggregate stock of physical capital employed by the rep-

resentative firm is equal to the value of financial wealth held by households. More precisely,

the capital market clearing condition reads:

Kt+1 = E[
∑

st+1

at+1(st+1)qt(st+1)] (12)
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It is straightforward to show that the capital market clearing condition (12) in conjunction

with the household budget constraint (5) and the capital accumulation equations (2) and

(3) imply the goods market clearing condition (4) using the asset pricing formula (11).

We take an initial distribution over households types, (a0, h0, s0) as given. We place no

restrictions on this initial distribution. Our definition of a sequential equilibrium is standard:

Definition 1 A sequential equilibrium is a sequence of aggregate physical capital, {Kt}, and

rental rates, {r̃kt, r̃ht}, and a family of household plans, {ct, at, ht, dt}, one for each initial

type (a0, h0, s0), so that

i) Utilitymaximization of households: for each initial state, (a0, h0, s0), the plan {ct, at, ht}

solves the household problem (10).

ii) Profit maximization of firms: the aggregate capital-to-labor ratio and rental rates

satisfy the first-order conditions (1) for all t

iii) Profit maximization of financial intermediaries: financial contracts are priced accord-

ing to (11)

iv) Market clearing: aggregate physical capital used by the representative firm is equal

to aggregate financial wealth owned by households – equation (12) holds.

v) Rational expectations: expected continuation value functions are equal to actual con-

tinuation value functions: V e
t = Vt.

We next turn to the characterization of equilibria.

III. Theoretical Results

In this section, we state the main theoretical results.
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a) Change of Variables

For the characterization of equilibria, it is convenient to introduce new variables that em-

phasize that individual households solve a standard inter-temporal portfolio choice problem

(with additional participation constraints). To this end, introduce the following variables:

wt = ht +
∑

st

qt−1(st)at(st)

θht =
ht

φwt

, θat(st) =
at(st)

wt

1 + rt = (1 + rht(st))θht + θat(st) (13)

where rht(st)
.
= z(st)φr̃ht + ε(st) is the return on human capital investment. In (13) the vari-

able wt stands for beginning-of-period wealth consisting of human wealth, ht, and financial

wealth,
∑

st,St
qt−1(st)at(st). The variable θt = (θht, θat) denotes the vector of portfolio shares

and (1 + r) is the total return to investment. Using the new notation and substituting out

the investment variables, xkt and xht, the budget constraint (5) reads

wt+1 = (1 + r(θt, st, dt)wt − ct

1 = θh,t+1 +
∑

st+1

qt(st+1)θa,t+1(st+1) (14)

ct ≥ 0 , wt+1 ≥ 0 , θh,t+1 ≥ 0 .

Clearly, (14) is the budget constraint corresponding to an inter temporal portfolio choice

problem with linear investment opportunities and no exogenous source of income.

Using the definition (13), simple algebra shows that the household maximization problem

(10) is equivalent to the household maximization problem

max
{ct,wt,θt}

U ({ct}|s0) (15)

s.t. {ct, wt, θt} ∈ B(w0, θ0, s0)

where the budget set is now defined as

B(w0, θ0, s0)
.
= { {ct, wt, θt} | {ct, wt, θt} satisfies (7) and (14)}
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b) Recursive Equilibrium: Definition

We next define a recursive equilibrium. The household maximization problem (14) suggests

that we can use (w, θ, s) as the individual state variable. For the aggregate state, the variable

Ω ∈ IRn defined as

Ωt(st)
.
=

E [(1 + rt)wt|st]

E [(1 + rt)wt]
.

turns out to be a sufficient variable (see below), where Ωt(st) is the share of aggregate total

wealth owned by all households of type st. Note that E[Ωt] =
∑

st
Ωt(st) = 1 and that

(1 + rt)wt is individual wealth including current asset payoffs. In the recursive equilibrium

we construct below, the evolution of the endogenous aggregate state variable is given by

an endogenous law of motion Ωt+1 = Φ(Ωt). We further show that next-period’s optimal

portfolio choice is independent of (wt, θt), which implies that the market clearing conditions

(12) can be re-written as

K̃t+1 =

∑
st

(1 − θh(st,Ωt))Ωt(st)∑
st

θh(st,Ωt)Ωt(st)
(16)

Equation (16) defines a function K̃ = K̃(Ω), which together with the first-order conditions

(1) defines rental rate functions r̃k = r̃k(Ω) and r̃h = r̃h(K̃).

Given our definition of sequential equilibrium and the variables defined so far, our defi-

nition of recursive equilibrium is standard:

Definition 2 A recursive equilibrium is a law of motion, Φ, for the aggregate state variable,

Ω, rental rate functions r̃k = r̃k(Ω) and r̃h(Ω), an expected value function, V e, and a house-

hold policy function, g,5 so that

i) Utility maximization of households: for each household type, (w0, θ0, s0) = (w0, θ0, s0),

the household policy function, g, generates a plan, {ct, wt, θt}, that solves the household

5The function g defines next period’s endogenous state as a function of this period’s endogenous state
and this period’s exogenous shock:(wt+1, θt+1) = g(wt, θt, st).
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maximization problem (14).

ii) Profit maximization of firms: aggregate capital-to-labor ratio and rental rates satisfy the

first-order conditions (1).

iii) Financial intermediation: financial contracts are priced according to (11)

iv) Market clearing: equation (16) holds.

v) Rational expectations: V e = V and Φ is the law of motion induced by g.

c) Characterization of Household Problem (Partial Equilibrium)

The principle of optimality in conjunction with our discussion in the previous section re-

garding the appropriate aggregate state suggest that the household maximization problem

(14) is equivalent to the Bellman equation

V (w, θ, s,Ω) = max
w′ ,θ′

{
u ((1 + r(θ, s,Ω))w − w′) + β

∑

s′
V (w′, θ′, s′,Ω′)π(s′|s)

}

s.t. 1 = θ′h +
∑

s′

π(s′|s)θ′a(s′)
1 + rf(Ω)

(17)

0 ≤ w′ ≤ (1 + r(θ, s,Ω))w , θ′h ≥ 0

V (w′, θ′, s′,Ω′) ≥ Vd(w
′, θ′h, s

′,Ω′)

Ω′ = Φ(Ω)

where the default value function is given by

Vd(w, θh, s,Ω) = max
w′

{
u ((1 + rh(s,Ω))θhw − w′) + βp

∑

s′
Vd (w′, 1, s′,Ω′)π(s′|s)

+β(1 − p)
∑

s′
V e (w′, s′,Ω′)π(s′|s)

}

0 ≤ w′ ≤ (1 + rh(s,Ω))θhw

Ω′ = Φ(Ω)

Let T be the operator associated with the Bellman equation (17). In contrast to the stan-
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dard case without a participation constraint, the Bellman operator, T , defined by equation

(17) is in general not a contraction. However, it is still a monotone operator. Monotone

operators might have multiple fixed points, but under certain conditions we can construct

a sequence that converges to the maximal element of the set of fixed points. This maximal

solution is also the value function (principle of optimality). More precisely, if the condition

that for all s

∀θ′ : β
∑

s′
(1 + r(θ′, s′,Ω′))

1−γ
π(s′|s) < 1 if 0 < γ < 1 (18)

∃θ′ : β
∑

s′
(1 + r(θ′, s′,Ω′))

1−γ
π(s′|s) < 1 if γ > 1

holds,6 then we have the following results:

Proposition 1. Suppose that condition (18) is satisfied and that the law of motion, Φ, and

the value function of a household in financial autarky, Vd, are continuous. Let T stand for

the operator associated with the Bellman equation (17). Then

i) There is a unique continuous solution, V0, to the Bellman equation (18) without par-

ticipation constraint.

ii) limn→∞ T nV0 = V∞ exists and is the maximal solution to the Bellman equation (17)

iii) V∞ is the value function, V , of the sequential household maximization problem.

Proof . See appendix.

Consider the case V e = V . Using proposition 2 and an induction argument, we can then

show that the value function, V , has the functional form

V (w, θ, s,Ω) =

{
Ṽ (s,Ω)(1 + r(θ, s,Ω))1−γw1−γ if γ 6= 1

Ṽ (s,Ω) + 1
1−β

log (1 + r(θ, s,Ω)) + 1
1−β

w otherwise
(19)

6Note that for the log-utility case, no condition of the type (18) is required.
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and that the corresponding optimal policy function, g, is

c(w, θ, s) =

{
c̃(s,Ω)(1 + r(θ, s,Ω))w if γ 6= 1
(1 − β)(1 + r(θ, s,Ω))w otherwise

(20)

w′(w, θ, s,Ω) =

{
(1 − c̃(s,Ω)(1 + r(θ, s,Ω))w if γ 6= 1
β(1 + r(θ, s,Ω))w otherwise

θ′(w, θ, s,Ω) = θ′(s,Ω) .

In other words, the value function has the functional form of the underlying utility func-

tion, consumption and next-period wealth are linear functions of this-period wealth, and

next-period portfolio choices only depend on the current shock. Moreover, we also that

the intensive-form value function, Ṽ , together with the optimal consumption and portfolio

choices, c̃ and θ, can be found by solving an intensive-form Bellman equation that reads

Ṽ (s,Ω) = max
c̃,θ′

{
c̃1−γ

1 − γ
+ β(1 − c̃)1−γ

∑

s′
(1 + r(θ′, s′,Ω))

1−γ
Ṽ (s′,Ω′)π(s′|s)

}

(21)

s.t. 1 = θ′k + θ′h +
∑

s′

θ′a(s
′)π(s′|s)

1 + rf(Ω)
, 0 ≤ c̃ ≤ 1 , θ′h ≥ 0

(
Ṽ (s′,Ω′)

Ṽd(s′,Ω′)

) 1
1−γ

(1 + r(θ′, s′,Ω)) ≥ (1 + rh(s
′,Ω))θ′h

Ω′ = Φ(Ω)

and

Ṽd(s,Ω) = max
c̃d

{
c̃1−γ
d

1 − γ
+ pβ(1 − c̃d)

1−γ
∑

s′
(1 + rh(s

′,Ω))
1−γ

Ṽd(s
′,Ω′)π(s′|s)

(1 − p)β(1 − c̃d)
1−γ

∑

s′
(1 + rh(s

′,Ω))
1−γ

Ṽ (s′,Ω′)π(s′|s)
}
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for γ 6= 1. In the case of log-utility, the intensive-form Bellman equation reads

Ṽ (s,Ω) = max
θ′

{
log(1 − β) +

β

1 − β
logβ +

β

1 − β

∑

s′
log(1 + r(θ′, s′,Ω)π(s′|s)

+β
∑

s′
Ṽ (s′,Ω′)π(s′|s)

}

s.t. 1 = θ′h +
∑

s′

θ′a(s
′)π(s′|s)

1 + rf (Ω)
, θ′h ≥ 0

e(1−β)(Ṽ (s′ ,Ω′)−Ṽd(s′,Ω′)) (1 + r(θ′, s′,Ω) ≥ (1 + rh(s
′,Ω))θ′h

Ω′ = Φ(Ω)

and

Ṽd(s,Ω) = log(1 − β) +
β

1 − β
logβ +

β

1 − β

∑

s′
log(1 + rd(s

′,Ω)π(s′|s)

+ p β
∑

s′
Ṽd(s

′,Ω′)π(s′|s) + (1 − p)β
∑

s′
Ṽ (s′,Ω′)π(s′|s)

Proposition 2. Suppose that condition (18) is satisfied, the law of motion, Φ, is continu-

ous, and V e = V . Then the value function, V , has the functional form (19) and the optimal

policy function is given by (20). Moreover, the intensive-form value function, Ṽ , and the

corresponding optimal consumption and portfolio choices, c̃ and θ′, are the maximal solution

to the intensive-form Bellman equation (21). This maximal solution is obtained by iterat-

ing on the solution, Ṽ0, of the intensive-form Bellman equation (21) without participation

constraint:

Ṽ = lim
n→∞

T̃ nṼ0 ,

where T̃ is the operator associated with the intensive-form Bellman equation (21)

Proof Appendix.
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Note that proposition 2 cannot simply be proved by the guess-and-verify method we have

used to prove proposition 1 for the case of financial autarky. The reason is that there may

be multiple solutions to the Bellman equation (17). In other words, the operator associated

with the Bellman equation is monotone, but not a contraction. However, proposition 2

ensures that we have indeed found the value function associated with the original utility

maximization problem, and also provides us with a iterative method to compute this solution.

Note further that the constraint set in (21) is linear since the return functions are linear in θ.

Thus, the constraint set is convex and we have transformed the original utility maximization

problem into a convex problem. In other words, the non-convexity problem alluded to in the

introduction has been resolved.

d) Characterization of Recursive Equilibria

Proposition 2 shows how to rewrite the maximization problem of individual households

into a recursive problem that is wealth-independent. One implication of the intensive-form

representation of the individual maximization problem is that optimal portfolio choices can

be written as a function of s only: θ′ = θ′(s). This result in turn implies that the market

clearing condition (12) can be written as (14) defining a function K̃ ′ = K̃ ′(Ω) and, using

the first-order conditions (1), rental rate functions r̃′k = r̃′k(Ω) and r̃′h = r̃′h(Ω). A second

implication of proposition 2 is that the equilibrium law of motion, Φ, can be explicitly

derived:

Ω′(s′) =

∑
s(1 − c̃(s,Ω))(1 + r(θ′(s,Ω), s′,Ω))π(s′|s)Ω(s)

∑
s,s′(1 − c̃(s,Ω))(1 + r(θ′(s,Ω), s′,Ω))π(s′|s)Ω(s)

(22)

In sum, a recursive equilibrium can be found by solving (21)-(24):

Proposition 3. Suppose that (θ, c̃, Ṽ , rf) is an intensive-form equilibrium, that is, the

consumption-portfolio choice (c̃, θ) together with the intensive-form value function Ṽ are

the maximal solution to the intensive-form Bellman equation (21), the market clearing con-
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ditions (16) is satisfied, and the law of motion is given by (22). Then (g, Ṽ , rf ,Φ) is a

recursive equilibrium, where g is the individual policy function associated with (θ, c̃) and Φ

the aggregate law of motion induced by (θ, c̃).

Proof . See appendix.

Proposition 3 simplifies the computation of recursive equilibria substantially. In our

framework, the infinite-dimensional wealth distribution is not a revenant state variable.

Instead, the distribution of wealth shares over household types, Ω, becomes a relevant state

variable. Note that Ω is in many applications a low-dimensional object. For example,

suppose that st = (s1t, s2t), where {s1t} and {s2t} are two independent processes and {s2t}

is an i.i.d process. In this case neither c̃ nor θ depend on s2 and the relevant aggregate state

is Ω(s1) only.

e) Extension: Aggregate Shocks

So far , we have considered economies with only idiosyncratic risk, but it is straightforward

to introduce aggregate risk into the framework. To this end, suppose that there are idiosyn-

cratic shocks, s, and aggregate shocks, S, and that uncertainty is described by a stationary

joint Markov process {st, St} with transition probabilities denoted by π(st+1, St+1|st, St).

The relevant aggregate state then becomes (Ωt, St), where Ωt is defined as before. In a re-

cursive equilibrium, the evolution of the endogenous aggregate state variable is given by an

endogenous law of motion Ωt+1 = Φ(Ωt, St, St+1). Further, rentals rates and the interest rate

on financial transactions become functions of the aggregate state: rk,t+1 = rk(Ωt, St, St+1),

rh,t+1 = rh(Ωt, St, St+1), and rft = rf (Ωt, St). The definition of a recursive equilibrium is,

mutatis mutandis, as before.

A straightforward (though lengthy) extension of the subsequent theoretical analysis shows

that a modified version of our general characterization results still hold. In particular,
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recursive equilibria can be computed by solving a convex problem that is independent of the

wealth distribution, though clearly the finite-dimensional distribution of relative wealth, Ω,

still enters into the equilibrium conditions.

IV. Quantitative Analysis

In this section, we present the quantitative example.

a) Specification

We set the period length to one year. We assume that the exogenous individual state has

two components, s = (s1, s2). The first component, s1, is the age of a household, which can

take on three values: s1 ∈ {y,m, o}. Here s1 = o stands for a young household, s1 = m for

a middle-aged household, and s1 = o for an old household. We assume that households age

stochastically, that is, transitions from one age group to another age group are governed by

transition probabilities π(s′1|s1). In our calibration below we choose the transition across age

groups so that households spend on average 20 years in each age group corresponding to the

age groups 20−40, 41−60, and 61−80. Thus, we assume π(y|y) = π(m|m) = π(o|o) = 1/20.

We interpret the transition from s1 = o to s1 = y as the event that an old household consisting

of grandparents dies and simultaneously the grandchildren enter the labor market and create

a new, young, household. If grandparents care about their grandchildren (intergenerational

link in preferences), then this is equivalent to an old household becoming a young household.

The second component of the state, s2, describes a human capital shock. We assume that

human capital shocks are i.i.d. over time and across household types, s2. We parameterize

the ε-function appearing in the human capital equation (3) as ε(s1, s2) = ϕ(s1)− δh + η(s2).

Note that we assume that the function η is independent of age s1, an assumption that we

can easily relax. We interpret ϕ as a learning-by-doing parameter and δh as the average

depreciation rate of human capital in the economy. Note that learning-by-doing depends
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on age.7 In our calibration below, we assume that learning-by-doing is more important

for young households: ϕy > ϕm > ϕo. The human capital return is given by rh(s1, s2) =

φr̃h + ϕ(s1) − δh + η(s2). Finally, we normalize the mean of human capital shocks to zero:
∑

s2
η(s2)π(s2) = 0. Thus, expected human capital returns for a household of age s1 are

r̄h(s1) =
∑

s2
rh(s1, s2)π(s2) = r̃ + ϕ(s1) − δh.

b) Equilibrium Conditions

Given this assumption, the intensive-form Bellman equation (21) becomes

Ṽ (s1) = max
c̃,θ′





c̃1−γ

1 − γ
+ β(1− c̃)1−γ

∑

s′1,s′2

(1 + r(θ′, s′1, s
′
2))

1−γ
Ṽ (s′1)π(s′2)π(s′1|s1)





(23)

s.t. 1 = θ′h +
∑

s′1 ,s′2

θ′a(s
′
1, s

′
2)π(s′2)π(s′1|s1)

1 + rf
, 0 ≤ c̃ ≤ 1 , θ′h ≥ 0

(
Ṽ (s′1)

Ṽd(s′1)

) 1
1−γ

(1 + r(θ′, s′1, s
′
2)) ≥ (1 + rh(s

′
1, s

′
2))θ

′
h

and

Ṽd(s1) = max
c̃d





c̃1−γ
d

1 − γ
+ pβ(1 − c̃d)

1−γ
∑

s′1,s′2

(1 + rh(s
′
1, s

′
2))

1−γ
Ṽd(s

′
1)π(s′2)π(s′1|s1)

(1 − p)β(1 − c̃d)
1−γ

∑

s′1 ,s′1

(1 + rh(s
′
1, s

′
2))

1−γ
π(s′2)Ṽ (s1)π(s′1|s1)





From (23) it immediately follows that the optimal portfolio choice, θ, and the optimal

consumption-saving choice, c̃, only depend on age s1 but not on human capital shocks s2. In

other words, household consumption and portfolio choices are independent are independent

7Note that we have set the labor productivity parameter z = 1 so that all labor income risk is generated
through the human capital shock η. In Krebs, Kuhn, and Wright (2015) we consider the more general version
with additional shocks z.
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of i.i.d. shocks. This then implies that the relevant aggregate state, Ω, only depends on age,

s1. The stationary Ω is then determined by the equation

Ω(s′1) =

∑
s1 ,s′2

(1 − c̃(s1))(1 + r(θ′(s1), s
′
1, s

′
2))π(s′2)π(s′1|s1)Ω(s1)

∑
s1,s′1 ,s′2

(1 − c̃(s1))(1 + r(θ′(s1), s′1, s
′
2))π(s′2)π(s′1|s1)Ω(s1)

. (24)

The market clearing conditions (16) becomes

K̃ =
1 −∑

s1
θh(s1)Ω(s1)∑

s1
θh(s1)Ω(s1)

(25)

Equations (23), (24), and (25) determine an intensive-form equilibrium.

c) Computation

We solve the three equations (23), (24), and (25) as follows. We pick an aggregate capital-to-

labor ratio, K̃, which determines the rental rates r̃k and r̃h and therefore also the investment

return function r. Given the values for the investment returns, we solve the intensive-form

household decision problem (23) and the stationary law of motion (24). This determines

values for θ, c̃, and Ω, which can be used to determine a new value for K̃ using (25). We

then iterate until convergence.

Our computation approach requires in each step of the iteration to solve the constrained

maximization problem (23). We solve this problem by iteration. More precisely, we define

the values ṽn(s1) and ṽn
d (s1), recursively by

ṽn+1(s1) =

{
(c̃n(s1))

1−γ

1 − γ
+ (26)

β (1 − c̃n(s1))
1−γ

∑

s′1 ,s′2

(θn
h(s1)(1 + rh(s

′
1, s

′
2)) + θn

a(s1, s
′
1, s

′
2))

1−γ
ṽn(s1)π(s′2)π(s′1|s1)





c̃n(s1) = 1 −


β

∑

s′1,s′2

(θn
h(s1)(1 + rh(s

′
1, s

′
2)) + θn

a (s1, s
′
1, s

′
2))

1−γ
π(s′2)π(s′1|s1)




1
γ

and

ṽn+1
d (s1) =

(c̃d(s1))
1−γ

1 − γ
+ β(1 − c̃d(s1))

1−γp
∑

s′1 ,s′2

(1 + rh(s
′
1, s

′
2))

1−γ
ṽn

d (s′1)π(s′2)π(s′1|s1)

23



+β(1 − c̃d(s1))
1−γ(1 − p)

∑

s′1,s′2

(1 + rh(s
′
1, s

′
2))

1−γ
π(s′2)ṽ

n(s′1)π(s′1|s1)

c̃d(s1) = 1 −

β

∑

s′1 ,s′2

(1 + rh(s
′
1, s

′
2))

1−γ
π(s′2)π(s′1|s′1)




1
γ

where the portfolio choices (θn
h(s1), θ

n
a (s1)) for each s1 are the solution to

max
θh,θa

∑

s′1,s′2

(θh(1 + rh(s
′
1, s

′
2)) + θa(s

′
1, s

′
2))

1−γ
π(s′)

s.t. θh +
∑

s′1,s′2

θa(s
′
1, s

′
2)π(s′2)π(s′1|s1)

1 + rf
= 1 (27)

θh(1 + rh(s
′
1, s

′
2)) + θa(s

′
1, s

′
2) ≥ θh(1 + rh(s

′
1, s

′
2))

(
ṽn

d (s′1)

ṽn(s′1)

) 1
1−γ

The intensive-from value function and the corresponding optimal portfolio choice are ob-

tained by taking the limit ṽ = limn→∞ ṽn, ṽd = limn→∞ ṽn, and θ = limn→∞ θn. To solve

the portfolio problem (28) for given n and s1, we first fix θn
h(s1) = θ̄n

h(s1) and find θn
a(s1)

solving (28) for given θ̄n
h(s1). To this end, order the states (s′1, s

′
2) for each s1 so that

rh(s1, 1) > rh(s1, 2) > . . . > rh(s1, S). Suppose for the first (s′1, s
′
2) = 1, . . . , J(s1) states the

participation constraint is binding. Then θn
a(s1) is given by

θn
a(s1, s

′
1, s

′
2) = θ̄n

h(s1)(1 + rh(s
′
1, s

′
2))



(

ṽn
d (s′1)

ṽn(s′1)

) 1
1−γ

− 1


 for (s′1, s

′
2) = 1, . . . , J(s1)

θn
a(s1, s

′
1, s

′
2) = r̄n(s1) − θ̄n

h(s1)(1 + rh(s
′
1, s

′
2)) for (s′1, s

′
2) = J(s1) + 1, . . . , S (28)

r̄n(s1) =
1

∑S
s′=J(s1)+1 π(s′2)π(s′1|s1)

[
(1 + rf )(1 − θ̄n

h(s1)) +

θ̄n
h(s1)

S∑

s′=J(s1)+1

(1 + rh(s
′
1, s

′
2))π(s′2)π(s′1|s1) −

θ̄n
h(s1)



(

ṽn
d (s′1)

ṽn(s′1)

) 1
1−γ

− 1




J(s1)∑

s′=1

(1 + rh(s
′
1, s

′
2))π(s′2)π(s′1|s1)




Deriving the corresponding first-order conditions it is easy to see that for given θ̄n
h(s1), the

solution θn
a(s1) to (28) is determined by (29), where J(s1) is the smallest number for which
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the portfolio choice satisfies the participation constraint. The optimal θn
h(s1) is then found

using a grid and searching on the grid for the optimal value.

d) Calibration: Partial Equilibrium

In this section, we calibrate the partial equilibrium version of the economy, that is, we find

values for the expected investment returns rf and r̄(s1) = r̃h +ϕ(s1)− δh without specifying

the production function that generates these returns. We calibrate an annual risk-free rate

of rf = 3%, in line with Kaplan and Violante (2010) and roughly in line with Huggett et al.

(2011) and Krueger and Perri (2006) who use a 4% annual risk-free rate, but also deduct

capital income taxes.

We choose the age-dependent expected human capital returns, r̄(s1), to match life-cycle

profile of earnings of the median household in the data. Specifically, we first construct a life-

cycle profile of median household earnings using data drawn from the Survey of Consumer

Finance as in Krebs, Kuhn, and Wright (2015). Given this profile of median earnings, we

compute the average earnings growth for the young households (age group 21 − 40) and

middle-aged household (age group 41 − 60), and then choose r̄h(y) and r̄h(m) so that the

model implies an earnings growth that match the empirical averages. The average annual

earnings growth rate for young households is 4.10 percent and −0.76 percent for middle-

aged households, and the implied excess human capital returns are r̄h(y) − rf = 6.77% and

r̄h(m)−rf = 1.65%. An average human capital return of 9.77 percent is in line with empirical

estimates of the returns to on-the-job-training – see Krebs, Kuhn, and Wright (2005) for a

discussion of the empirical literature. For old households we choose r̄h(o) = 0 so that these

households only invest in physical capital (the risk-free asset).

We assume that human capital shocks, η, are approximately normally distributed, that

is, we choose the probabilities π(s2) and the realizations η(s2) to approximate a normal
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distribution with mean 0 and standard deviation ση = 0.15. The parameter ση measures

human capital risk and our choice of ση = 0.15 is motivated by the following considerations.

In the model economy, labor income of an individual household in period t is given by

yht = r̃hht, so that the growth rate of labor income is equal to the growth rate of human

capital: yh,t+1/yht = hh,t+1/ht. We can use the equilibrium solution to compute the human

capital growth between year t and year t + 1, which is

ht+1

ht
= β (θh(s1,t−1)(1 + r̃h + ϕ(s1,t) − δh + η(s2t)) + θa(s1,t−1, s1t, s2t)) (29)

If we neglect transitions across age groups s1, then (29) can be written as

logyh,t+1 = logyht + d(s1) + εt, (30)

where d(s1) is a constant and {εt} is a sequence of i.i.d. random variables with mean zero

and variance

σ2
ε (s1) = θ2

h(s1)var [θh(s1)η(s2t) + θa(s1, s2t) | s1] (31)

Hence, the logarithm of labor income follows a random walk with drift d and innovation

term εt.
8 The random walk specification is often used by the empirical literature to model

the permanent component of labor income risk (Carroll and Samwick (1997), Meghir and

Pistaferri (2004), and Storesletten et al. (2004)). Thus, their estimate of the standard

deviation of the error term for the random walk component of annual labor income can be

used to find a value for σ2
η for given portfolio choices θh and θa. For young households, we

will see below that θh is close to one and insurance payments, θa(s2), are small, so that we

have σ2
ε ≈ σ2

η. In our baseline calibration, we use ση = .15, which lies on the lower end of the

spectrum of estimates found by the empirical literature. For example, Carroll and Samwick

8We have εt instead of εt+1 in equation (30), and the latter is the common specification for a random
walk. However, this is not a problem if the econometrician observes the idiosyncratic depreciation shocks
with a one-period lag. In this case, (30) is the correct equation from the household’s point of view, but a
modified version of (30) with εt+1 replacing εt is the specification estimated by the econometrician.
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(1997) find .15, Meghir and Pistaferri (2004) estimate .19, and Storesletten et al. (2004)

have .25 (averaged over age-groups and, if applicable, over business cycle conditions). All

these studies use labor income before transfer payments, which is the relevant variable from

our point of view.

For the baseline calibration, we assume that households who default regain access to

financial markets after 7 years: (1 − p) = 1/7. Finally, we assume a degree of relative risk

aversion of γ = 1 (log-utility) and set the annual discount factor to β = 0.95.9

e) Consumption Insurance: Partial Equilibrium

In this section, we report the degree of consumption insurance that emerges in partial equi-

librium. In addition, we discuss the model implication for human capital investment and

the welfare consequences of the lack of consumption insurance. We measure human capital

investment by the portfolio choice variable θh and consumption insurance by the variable

1 − σc/σc,d, where σc is the standard deviation of individual consumption growth for the

household with access to financial markets and σc,d is the standard deviation of individual

consumption growth for a household in default (no access to financial markets). Our welfare

measure is the welfare gain, expressed as fraction of lifetime consumption, of moving from

the current situation with imperfect insurance (binding enforcement constraint) to a situa-

tion with full insurance (no enforcement constraint). Our welfare measure expresses the cost

of limited enforcement of financial contracts. The results are as follows.

For these parameter values, young households hold almost all of their wealth in human

capital with θh = 0.98. This seems reasonable given that households in their 20’s typically

have little in the way of net worth, while households in their thirties are approaching the peak

of their human capital wealth. When households reach middle age, they hold a substantial

9An alternative calibration approach is to use the discount factor to match a given value of the expected
human capital return for the young.

27



fraction of their wealth in the form of the risk free asset with the portfolio share of human

capital falling to θh = 0.91. The old, by assumption, hold no human capital.

Given that young households are almost entirely invested in their human capital, they are

exposed to a large amount of risk. The enforcement constraints limit how much of this risk

can be insured, with our measure of consumption insurance 1−σc/σc,d = 0.434 showing that

almost 60% of the young’s consumption risk is not insured. For middle aged households,

who hold much more of the risk-free asset, consumption insurance rises to 1 − σc/σc,d =

0.758 implying that middle-aged households are insured against all but about 25% of their

consumption risk. Both of these numbers are significantly large than those derived from

other studies in which there is no life-cycle profile for income and no investment in human

capital; in those models, there is little reason for households to borrow so that enforcement

constraints do not bind often and consumption insurance is high.

Lastly, the fact that consumption is underinsured leads to significant welfare losses. Young

households would pay ∆ = 3.503 of their lifetime consumption to move to full insurance,

while middle aged households would pay ∆ = 1.418 of their lifetime consumption. These

numbers are large when compared to traditional measures of the costs of underinsurance,

such as Lucas’s (1987) welfare cost of business cycles.

f) Sensitivity Analysis: Partial Equilibrium

In this section, we analyze how the results of the partial equilibrium analysis depend on the

various parameter choices. To this end, we consider a constant-type household; this means

that our results will not be exactly comparable to those from the changing types model of

the previous section.

Figure 1, 2, and 3 here.

We begin with a discussion how expected human capital returns affect portfolio choice,
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consumption insurance and welfare. Figure 1 depicts changes in the households human

capital portfolio decision as excess returns vary. For excess returns on the order of 1.5%,

which we found for middle aged households in the changing type economy, just over 85%

of the households portfolio is invested in human capital. For returns approaching the 7%

earned by young households, roughly 97% of the households portfolio is concentrated in

human capital. As returns approach 15%, the portfolio share exceeds one implying that the

household is borrowing to finance higher human capital investment.

Figure 2 plots consumption insurance as excess returns vary which further illustrates the

steep drop off in consumption insurance as higher excess returns drive households onto their

enforcement constraints. Whereas returns under 2% result in consumption insurance of 80%

or higher, excess returns of around 7% drive insurance down under 40% falling to under 20%

when excess returns exceed 14%. Figure 3 plots the corresponding welfare losses which rise

from around 1% of lifetime consumption when excess returns are under 2% to more than

5% when excess returns exceed 6% all the way to 10% of lifetime consumption when excess

returns are 16%.

Figures 4,5, and 6 here.

Figures 4, 5 and 6 depict what happens when we increase the coefficient of relative risk

aversion from our benchmark γ = 1 to γ = 2. As shown in Figure 4, higher risk aversion

leads to less investment in human capital at all levels of excess returns, with even a modest

coefficient of 2 resulting in roughly five percentage points less investment in human capital.

As households shift away from human capital investment towards the risk free asset, the

extent to which they are exposed to labor income risk is reduced. Figure 5 also shows that

the share of this risk that can be insured increases. This is because, with higher risk aversion,

the costs of being in financial autarky are larger resulting in looser enforcement constraints.
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Figure 6 plots the corresponding welfare costs of imperfect enforcement. For low excess

returns, welfare costs are similar for both levels of risk aversion. This is because the extra

insurance available when risk aversion is higher is roughly offset by the lower consumption

growth resulting from less investment in the high return asset. As excess returns grow, the

human capital portfolio share levels out and so the higher consumption insurance leads to

smaller welfare costs from underinsurance.

Figures 7, 8 and 9 here.

Figures 7, 8 and 9 depict the effect of varying the level of income risk from our benchmark

of σeta = 0.15 to a lower value of ση = 0.10. With lower risk, Figure 7 shows that human

capital investment levels are higher for most levels of the excess return. Only when excess

returns exceed 14%, so that households begin to want to borrow to finance even greater

human capital investments, does lower income risk lower human capital investment; this is

because with lower levels of income risk, the cost of being in financial autarky is smaller

and the enforcement constraints are tighter. Consumption insurance is always lower with

lower income risk reflecting the tighter borrowing constraints as shown in Figure 8; for excess

returns approaching 16%, consumption insurance approaches zero. However, as shown in

Figure 9, the welfare costs of this underinsurance are smaller as the direct effect of reducing

income risk dominates the reduction in the quantity of this risk that is insured.

Figure 10, 11, and 12 here.

Lastly, Figures 10, 11, and 12 depict the effect of changes in the severity of contract

enforcement, with the amount of time the household is in financial autarky decreased from

the benchmark average level of 7 years down to 4 years. Figure 10 shows that weaker en-

forcement leads to less investment in human capital, although the reduction is quite modest.

Figures 11 and 12 show that both consumption insurance and the welfare costs of insurance

30



are barely affected by changing the enforcement parameter.

g) Closing the Model: General Equilibrium

We now return to the full general equilibrium model (endogenous investment returns) and

show how to complete the model calibration by introducing a production function and

imposing a number of aggregate targets. We use a Cobb-Douglas production function

f(K̃) = AK̃α, where 0 < α < 1 is capital’s share in output and A is a productivity pa-

rameter. In this case, the rental rates of physical capital and human capital are given by

r̃k = αAK̃α−1 (32)

r̃h = (1 − α)AK̃α

As in Krebs, Kuhn, and Wright (2015), we target an aggregate share of capital income,

r̃kK/Y , of 0.32 so that α = 0.32. We also follow Krebs, Kuhn, and Wright (2015) and target

an aggregate capital-to-output ratio of 2.94. This target in conjunction with the target

rf = r̃k − δk = 0.03 yields r̃k = 0.1085 and δk = 0.0785.

The partial equilibrium model discussed in the previous sections implies an aggregate

capital-to-output ratio that is given by the expression10

K

Y
=

1 − Θh

r̃k(1 − Θh) + r̃h

φ
Θh

(33)

where Θh =
∑

s1
θh(s1)Ω(s1) is the aggregate share of human capital in total wealth. This

aggregate portfolio choice is determined by the partial equilibrium model. Given the value

r̃k = 0.1085 and the target value K
Y

= 2.94, equation (33) determines value of r̃h

φ
. We find

r̃h

φ
= 0.0772.

Our final aggregate target is the ratio of human capital investment to output, Xh

Y
. Using

10If the model matches a given capital-to-output ratio it also matches, for given r̃k, a given capital income
to output ratio, r̃kK

Y .
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the human capital accumulation equation and the equilibrium policies, we find

Xh

Y
=

Θh

(∑
s1=y,m g(s1)Ω(s1) −

∑
s1=y,m r̄h(s1)Ω(s1) + φ2 r̃h

φ

)

r̃k(1 − Θh) + φ r̃h

φ
Θh

, (34)

In (34) the values of all variables except φ are already determined. Thus, (34) can be used

to pin down a value for φ once a target value for Xh

Y
is specified. We choose a target value

Xh

Y
= 0.06 – see Krebs, Kuhn, and Wright (2015) for a discussion of this choice. Given this

target value, we find that φ = XX. This together with the already specified value for r̃h

φ

implies r̃h = XX. Further, the rental rate expressions (32) together with the values for r̃h

and r̃k and α imply A = XX and K̃ = XX.

Finally, we note that the values for r̄h(s1) and r̃h imply values for the difference ϕ(s1)−δh,

but that the learning-by-doing parameters and the human capital depreciation rate are not

separately identified. However, if we follow Krebs, Kuhn, and Wright (2015) and choose

δh = 0.04, we find ϕ(y) = XX and ϕ(m) = XX.
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Appendix

Proof of Proposition 1

To simplify the notation, denote the endogenous individual state vector as xt = (wt, θt)

and suppress the dependence on the aggregate state, Ω. Further, define a payoff function as

F (xt, st, xt+1) = u((1 + r(θt, st))wt − wt+1), and a feasibility correspondence as

Γ(xt, st) =



xt+1 ∈ X | θh,t+1(st) +

∑

st+1

θa,t+1(st+1)π(st+1|st)

1 + rf
= 1 , (A1)

0 ≤ wt+1 ≤ (1 + r(θt+1, st))wt , θh,t+1 ≥ 0}

Using this notation, the household maximization problem reads

max E

[ ∞∑

t=0

βtF (xt, st, xt+1)|x0, s0

]
(A2)

s.t. xt+1 ∈ Γ(xt, st)

E

[ ∞∑

n=0

βnF (xt+n, st+n, xt+n+1)|x0, s
t

]
≥ Vd(xt, st)

The corresponding Bellman equation reads:

V (x, s) = max
x′

{
F (x, s, x′) + β

∑

s′
V (x′, s′)π(s′|s)

}
(A3)

s.t. x′ ∈ Γ(x, s)

V (x′, s′) ≥ Vd(x
′, s′)

Define an operator, T , that maps semi-continuous functions into semi-continuous func-

tions as

TV (x, s) = max
x′

{F (x, s, x′) + βE[V (x′, s′)|s]} (A4)

s.t. x′ ∈ Γ(x, s)

V (x′s′) ≥ Vd(x
′, s′) .
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A standard contraction mapping argument shows that there is a unique continuous solution,

V0, to the Bellman equation (A3) without participation constraint if i) F is continuous, ii)

Γ is compact-valued and continuous, and (18) holds. Extending the argument of Rustichini

(1998),11 it can be shown that V∞ = limn→∞ T nV0 exists, is equal to the maximal solution of

the Bellman equation (A3), and is the value function of the sequential maximization problem

(A2) if the following four conditions hold: i) F is continuous, ii) Γ is compact-valued and

continuous, iii) for all states, (x, s), there exists a feasible plan for the sequential problem

(A2) so that the corresponding expected lifetime utility (payoff) is greater than −∞, and

iv) for any given state, (x, s), the value function of the max-problem without participation

constraints satisfies V ∗
0 (x, s) < +∞. Thus, to prove proposition 1 it suffices to show that

conditions i)-iv) hold.

The continuity of the payoff function, F , is obvious. The correspondence, Γ, is compact-

valued since portfolio-choices, θ′, are elements of a closed and bounded subset of IRm. Closed-

ness follows from the fact that the set is defined by equalities and weak inequalities. Restrict-

ing attention to a bounded set can be shown to be without loss of generality. Continuity

of the correspondence Γ is also straightforward to show. A standard argument shows that

conditions iii) and iv) hold if condition (18) is satisfied. This proves proposition 2.

Proof of Proposition 2

As before, let V0 be the solution of the Bellman equation (A3) without the participation

constraint. Simple guess-and-verify shows that V0 has the following functional form:

V0(w, θ, s) =

{
Ṽ0(s) (1 + r(θ, s))1−γ w1−γ if γ 6= 1 (A5)

Ṽ0(s) + 1
1−β

log(1 + r(θ, s)) + 1
1−β

w otherwise

11Rustichini (1998) consider a class of dynamic programming problems with participation constraint (in-
centive compatability constraint) and possibly unbounded utility. However, he requires bi-convergence,
which is always satisfied if lifetime-utility is bounded for all feasible paths (Streufert, 1990). Unfortunately,
in our problem with γ ≥ 1 the requirement of lower convergence is not satisfied, so that Rustichini (1998) is
not directly applicable.
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where Ṽ0 is the solution to the intensive-form Bellman equation (A3) without participation

constraint. Let the operator T be defined as in (A4). We show by induction that if Vn = T nV0

has the functional form, then Vn+1 = T n+1V) has the functional form. For n = 0 the claim is

true because V0 has the functional form. Suppose now Vn has the functional form. We then

have

Vn+1(w, θ, s) = TVn(w, θ, s)

= max
w′,θ′

{
((1 + r(θ, s))w − w′)1−γ

1 − γ
+
∑

s′
Ṽn(s′)(1 + r(θ′, s′))1−γ(w′)1−γπ(s′|s)

}

s.t. 1 = θ′h +
∑

s′

θ′a(s
′)π(s′|s)

1 + rf

(A6)

0 ≤ w′ ≤ (1 + r(θ, s))w , θ′h ≥ 0

Ṽn(s′) (1 + r(θ′h, θa(s
′)))

1−γ
(w′)1−γ

≥ Ṽd(s
′)(1 + r(θ′h, 0, s

′)

for γ 6= 1 and

Vn+1(w, θ, s) = TVn(w, θ, s)

= max
w′,θ′

{
log (1 + r(θ, s))w − w′) + β

∑

s′
Ṽn(s′)π(s′|s)

+
β

1 − β

∑

s′
log(1 + r(θ′, s′))π(s′|s) +

β

1 − β
log w′

}

s.t. 1 = θ′h +
∑

s′

θ′a(s
′)π(s′|s)

1 + rf

0 ≤ w′ ≤ (1 + r(θ, s))w , θ′h ≥ 0

Ṽn(s′) +
1

1 − β
log(1 + r(θ′h, θ

′
a(s

′), s′)) +
1

1 − β
log w′

≥ Ṽd(s
′) +

1

1 − β
log(1 + r(θ′h, 0, s

′)) +
1

1 − β
log w′

for the log-utility case. Clearly, the solution to the maximization problem defined by the

right-hand-side of (A6) has the form

w′
n+1 = (1 − c̃n+1(s))(1 + r(θn+1, s))w (A7)
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θ′n+1 = θ′n+1(s) ,

where the subscript n + 1 indicates step n + 1 in the iteration. Thus, we have

Vn+1(w, θ, s) =

{
Ṽn+1(s) (1 + r(θ, s))1−γ w1−γ if γ 6= 1

Ṽn+1(s) + 1
1−β

log(1 + r(θ, s)) + 1
1−β

w otherwise
,

where Ṽn+1 is defined accordingly.

From proposition 2 we know that V∞ = limn→∞ T nV0 exists and that it is the maximal

solution to the Bellman equation (A3) as well as the value function of the corresponding

sequential maximization problem (A2). Since the set of functions with this functional form

is a closed subset of the set of semi-continuous functions, we know that V∞ has the functional

form. This prove proposition 3.

Proof of Proposition 3

From proposition 2 we know that individual households maximize utility subject to the bud-

get constraint and participation constraint if condition (18) is satisfied. Thus, it remains to

show that the market clearing condition can be written as (16) and that the law of motion

(22) describes the equilibrium evolution of the relative wealth distribution.

For the aggregate value of financial asset holdings we find:

E[θa,t+1wt+1] = E[θa,t+1(1 − c̃t)(1 + rt)wt] (A8)

= E[E[θa,t+1(1 − c̃t)(1 + rt)wt|st]]

= E[θa,t+1(1 − c̃t)E[(1 + rt)wt|st]]

= E [(1 + rt)wt]
E[θa,t+1(1 − c̃t)E[(1 + rt)wt|st]]

E [(1 + rt)wt]

= E [(1 + rt)wt] E [θa,t+1(1 − c̃t)Ω(st)] .

where the first line follows from the budget constraint, the second line from the law of iterated

expectations, the third line from the fact that θa,t+1 and c̃t are independent of wealth and
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st−1, and the last line from the definition of Ω. A similar argument shows that

Ht+1 = E [(1 + rt)wt]E [θh,t+1(1 − c̃t)Ω(st)] . (A9)

Using the market clearing condition (12) and the definition of K̃ shows that (22) has to hold.

Finally, the law of motion for Ω can be found as:

Ωt+1(st+1) =
E [(1 + rt+1)wt+1|st+1]

E [(1 + rt+1)wt+1]
(A10)

=
E [(1 + rt+1)(1 − c̃t)(1 + rt)wt|st+1]

E [(1 + rt+1)(1 − c̃t)(1 + rt)wt]

=
E [E [(1 + rt+1)(1 − c̃t)(1 + rt)wt|st] |st+1]

E [E [(1 + rt+1)(1 − c̃t)(1 + rt)wt|st]]

=
E [(1 + rt+1)(1 − c̃t)E [(1 + rt)wt|st] |st+1]

E [(1 + rt+1)(1 − c̃t)E [(1 + rt)wt|st]]

=
E [(1 + rt+1)(1 − c̃t)E [(1 + rt)wt|st] |st+1]

E [(1 + rt+1)(1 − c̃t)E [(1 + rt)wt|st]]
×

E [(1 + rt)wt]

E [(1 + rt)wt]

=
E [(1 + rt+1)(1 − c̃t)Ωt(st)|st+1]

E [(1 + rt+1)(1 − c̃t)Ωt(st)]
,

where the second line follows from the budget constraint, the third line from the law of

iterated expectations, the fourth line from the fact that θt+1 and c̃t are independent of

wealth and st−1, and the last line from the definition of Ω. This completes the proof of

proposition 3.
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Figure 1: Portfolio choice for benchmark model
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Notes: Human capital share in total wealth as a function of excess human capital returns in the
baseline model.

Figure 2: Consumption insurance for benchmark model
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Notes: Consumption insurance as a function of excess human capital returns in the baseline model.
The insurance measure is one minus the ratio of the standard deviation of consumption relative to
the standard deviation of consumption in financial autarky.
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Figure 3: Welfare cost of underinsurance for benchmark model
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Notes: Welfare cost of underinsurance as a function of excess human capital returns in the baseline
model. Welfare costs are the equivalent variation in lifetime consumption for a household without
constraints. Welfare costs are in percentage points.

Figure 4: Portfolio choice for different degrees of risk aversion
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Notes: Human capital share in total wealth as a function of excess human capital returns in the
baseline model (γ = 1, log utility) in comparison to a case with higher risk aversion (γ = 2).
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Figure 5: Consumption insurance for different degrees of risk aversion
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Notes: Consumption insurance as a function of excess human capital returns in the baseline model
(γ = 1, log utility) in comparison to a case with higher risk aversion (γ = 2). The insurance
measure is one minus the ratio of the standard deviation of consumption relative to the standard
deviation of consumption in financial autarky.

Figure 6: Welfare cost of underinsurance for different degrees of risk aversion
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Notes: Welfare cost of underinsurance as a function of excess human capital returns in the baseline
model (γ = 1, log utility) in comparison to a case with higher risk aversion (γ = 2). Welfare costs
are the equivalent variation in lifetime consumption for a household without constraints. Welfare
costs are in percentage points.
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Figure 7: Portfolio choice for different levels of income risk
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Notes: Human capital share in total wealth as a function of excess human capital returns in the
baseline model (σ = 0.15) in comparison to a case with lower income risk (σ = 0.1).

Figure 8: Consumption insurance for different levels of income risk
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Notes: Consumption insurance as a function of excess human capital returns in the baseline model
(σ = 0.15) in comparison to a case with lower income risk (σ = 0.1). The insurance measure is
one minus the ratio of the standard deviation of consumption relative to the standard deviation of
consumption in financial autarky.
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Figure 9: Welfare cost of underinsurance for different levels of income risk
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Notes: Welfare cost of underinsurance as a function of excess human capital returns in the baseline
model (σ = 0.15) in comparison to a case with lower income risk (σ = 0.1). Welfare costs are the
equivalent variation in lifetime consumption for a household without constraints. Welfare costs are
in percentage points.

Figure 10: Portfolio choice for different levels of enforcement
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Notes: Human capital share in total wealth as a function of excess human capital returns in the
baseline model (σ = 0.15) in comparison to a case with lower income risk (σ = 0.1).
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Figure 11: Consumption insurance for different levels of enforcement
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Notes: Consumption insurance as a function of excess human capital returns in the baseline model
(p = 6

7
) in comparison to a case with weaker enforcement (p = 3

4
). The insurance measure is one

minus the ratio of the standard deviation of consumption relative to the standard deviation of
consumption in financial autarky.

Figure 12: Welfare cost of underinsurance for different levels of enforcement
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Notes: Welfare cost of underinsurance as a function of excess human capital returns in the baseline
model (p = 6

7
) in comparison to a case with weaker enforcement (p = 3

4
). Welfare costs are the

equivalent variation in lifetime consumption for a household without constraints. Welfare costs are
in percentage points.
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