Health Policies and Intergenerational Mobility

Yuliya Kulikova

Bank of Spain

yuliya.kulikova [at] bde [dot] es

Workshop on Human Capital Formation and Family Economics, Chicago, October 28, 2016

• Intergenerational mobility is receiving a lot of attention, both in academic and non-academic circles.

- Intergenerational mobility is receiving a lot of attention, both in academic and non-academic circles.
- In the US intergenerational income elasticity is about 0.4–0.6, quite higher than in most European countries.

- Intergenerational mobility is receiving a lot of attention, both in academic and non-academic circles.
- In the US intergenerational income elasticity is about 0.4–0.6, quite higher than in most European countries.
- Initial (pre-labor market) conditions are very important
 - Differences in initial conditions (ability, education) by the age of 20-25 explain up to 60% of variation in lifetime earnings (Keane and Wolpin 1997, Huggett, Ventura and Yaron 2011)

- Intergenerational mobility is receiving a lot of attention, both in academic and non-academic circles.
- In the US intergenerational income elasticity is about 0.4–0.6, quite higher than in most European countries.
- Initial (pre-labor market) conditions are very important
 - Differences in initial conditions (ability, education) by the age of 20-25 explain up to 60% of variation in lifetime earnings (Keane and Wolpin 1997, Huggett, Ventura and Yaron 2011)
- What determines initial conditions?
 - Education (both, early and late)
 - Family background (time and resources)

- Intergenerational mobility is receiving a lot of attention, both in academic and non-academic circles.
- In the US intergenerational income elasticity is about 0.4–0.6, quite higher than in most European countries.
- Initial (pre-labor market) conditions are very important
 - Differences in initial conditions (ability, education) by the age of 20-25 explain up to 60% of variation in lifetime earnings (Keane and Wolpin 1997, Huggett, Ventura and Yaron 2011)
- What determines initial conditions?
 - Education (both, early and late)
 - Family background (time and resources)
- What about health?

• What about health?

- What about health?
 - There are significant differences in health status of children
 Health Differences

- What about health?
 - There are significant differences in health status of children
 Health Differences
 - Health is persistent across generations (Parman 2012)
 Health Persistence

- What about health?
 - There are significant differences in health status of children
 Health Differences
 - Health is persistent across generations (Parman 2012)
 Health Persistence
 - Health matters for educational attainment and child test scores (Currie 2009)
 Ability Differences

- What about health?
 - There are significant differences in health status of children
 Health Differences
 - Health is persistent across generations (Parman 2012)
 Health Persistence
 - Health matters for educational attainment and child test scores (Currie 2009)
 Ability Differences
 - Health matters for labor market outcomes (Black, Devreux & Salvanes 2007, Smith 2009)

- What about health?
 - There are significant differences in health status of children
 Health Differences
 - Health is persistent across generations (Parman 2012)
 Health Persistence
 - Health matters for educational attainment and child test scores (Currie 2009)
 Ability Differences
 - Health matters for labor market outcomes (Black, Devreux & Salvanes 2007, Smith 2009)
 - ⇒ Is health important for intergenerational mobility?

- What about health?
 - There are significant differences in health status of children
 Health Differences
 - Health is persistent across generations (Parman 2012)
 Health Persistence
 - Health matters for educational attainment and child test scores (Currie 2009)
 Ability Differences
 - Health matters for labor market outcomes (Black, Devreux & Salvanes 2007, Smith 2009)
 - ⇒ Is health important for intergenerational mobility?
- What determines differences in health across children?
 - Genes
 - Parental decisions
 - Government policies (Medicaid)

- What about health?
 - There are significant differences in health status of children
 Health Differences
 - Health is persistent across generations (Parman 2012)
 Health Persistence
 - Health matters for educational attainment and child test scores (Currie 2009)
 Ability Differences
 - Health matters for labor market outcomes (Black, Devreux & Salvanes 2007, Smith 2009)
 - ⇒ Is health important for intergenerational mobility?
- What determines differences in health across children?
 - Genes
 - Parental decisions
 - Government policies (Medicaid)

In this paper I study how health and health policies affect intergenerational mobility.

- Model
 - Overlapping generations

- Overlapping generations
- Parents invest into human capital taking governmental policies into account

- Overlapping generations
- Parents invest into human capital taking governmental policies into account
- Multidimensional human capital: ability and health (as in Cunha, Heckman and Schennach 2010)

- Overlapping generations
- Parents invest into human capital taking governmental policies into account
- Multidimensional human capital: ability and health (as in Cunha, Heckman and Schennach 2010)
- Bridge the gap between literature on health and intergenerational mobility – human capital accumulation

- Overlapping generations
- Parents invest into human capital taking governmental policies into account
- Multidimensional human capital: ability and health (as in Cunha, Heckman and Schennach 2010)
- Bridge the gap between literature on health and intergenerational mobility – human capital accumulation
- Estimation

Model

- Overlapping generations
- Parents invest into human capital taking governmental policies into account
- Multidimensional human capital: ability and health (as in Cunha, Heckman and Schennach 2010)
- Bridge the gap between literature on health and intergenerational mobility – human capital accumulation

Estimation

 Panel Study of Income Dynamics + Child Development Supplement (1997-2013)

Model

- Overlapping generations
- Parents invest into human capital taking governmental policies into account
- Multidimensional human capital: ability and health (as in Cunha, Heckman and Schennach 2010)
- Bridge the gap between literature on health and intergenerational mobility – human capital accumulation

Estimation

- Panel Study of Income Dynamics + Child Development Supplement (1997-2013)
- Panel of children and their parents

Model

- Overlapping generations
- Parents invest into human capital taking governmental policies into account
- Multidimensional human capital: ability and health (as in Cunha, Heckman and Schennach 2010)
- Bridge the gap between literature on health and intergenerational mobility – human capital accumulation

Estimation

- Panel Study of Income Dynamics + Child Development Supplement (1997-2013)
- Panel of children and their parents
- Model validation through geographical variation in thresholds eleigibility for Medicaid (in progress)

Model

- Overlapping generations
- Parents invest into human capital taking governmental policies into account
- Multidimensional human capital: ability and health (as in Cunha, Heckman and Schennach 2010)
- Bridge the gap between literature on health and intergenerational mobility – human capital accumulation

Estimation

- Panel Study of Income Dynamics + Child Development Supplement (1997-2013)
- Panel of children and their parents
- Model validation through geographical variation in thresholds eleigibility for Medicaid (in progress)

Model

- Overlapping generations
- Parents invest into human capital taking governmental policies into account
- Multidimensional human capital: ability and health (as in Cunha, Heckman and Schennach 2010)
- Bridge the gap between literature on health and intergenerational mobility – human capital accumulation

Estimation

- Panel Study of Income Dynamics + Child Development Supplement (1997-2013)
- Panel of children and their parents
- Model validation through geographical variation in thresholds eleigibility for Medicaid (in progress)

Counterfactuals

Production process of human capital

Model

- Overlapping generations
- Parents invest into human capital taking governmental policies into account
- Multidimensional human capital: ability and health (as in Cunha, Heckman and Schennach 2010)
- Bridge the gap between literature on health and intergenerational mobility – human capital accumulation

Estimation

- Panel Study of Income Dynamics + Child Development Supplement (1997-2013)
- Panel of children and their parents
- Model validation through geographical variation in thresholds eleigibility for Medicaid (in progress)

- Production process of human capital
- Policy-relevant results

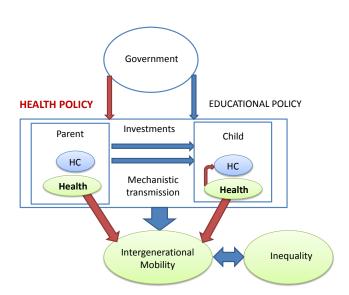
Model

- Overlapping generations
- Parents invest into human capital taking governmental policies into account
- Multidimensional human capital: ability and health (as in Cunha, Heckman and Schennach 2010)
- Bridge the gap between literature on health and intergenerational mobility – human capital accumulation

Estimation

- Panel Study of Income Dynamics + Child Development Supplement (1997-2013)
- Panel of children and their parents
- Model validation through geographical variation in thresholds eleigibility for Medicaid (in progress)

- Production process of human capital
- Policy-relevant results
- Aggregate and distributional effects


Model

- Overlapping generations
- Parents invest into human capital taking governmental policies into account
- Multidimensional human capital: ability and health (as in Cunha, Heckman and Schennach 2010)
- Bridge the gap between literature on health and intergenerational mobility – human capital accumulation

Estimation

- Panel Study of Income Dynamics + Child Development Supplement (1997-2013)
- Panel of children and their parents
- Model validation through geographical variation in thresholds eleigibility for Medicaid (in progress)

- Production process of human capital
- Policy-relevant results
- Aggregate and distributional effects

Outline

- Motivation
- 2 Model
- Estimation
- Results
 - Baseline Model
 - Counterfactuals

Overlapping generations

- Overlapping generations
- Household consists of one child and one parent

- Overlapping generations
- Household consists of one child and one parent
- Children live for 3 periods, adults for 5

- Overlapping generations
- Household consists of one child and one parent
- Children live for 3 periods, adults for 5
- Parents are altruistic

- Overlapping generations
- Household consists of one child and one parent
- Children live for 3 periods, adults for 5
- Parents are altruistic
- Parents decide on spending on education and health

- Overlapping generations
- Household consists of one child and one parent
- Children live for 3 periods, adults for 5
- Parents are altruistic
- Parents decide on spending on education and health
- Children accumulate health and human capital

- Overlapping generations
- Household consists of one child and one parent
- Children live for 3 periods, adults for 5
- Parents are altruistic
- Parents decide on spending on education and health
- Children accumulate health and human capital
- Government policies on health and education

- Overlapping generations
- Household consists of one child and one parent
- Children live for 3 periods, adults for 5
- Parents are altruistic
- Parents decide on spending on education and health
- Children accumulate health and human capital
- Government policies on health and education
- Health and human capital accumulated during childhood reflect in the adult's initial health and human capital

- Overlapping generations
- Household consists of one child and one parent
- Children live for 3 periods, adults for 5
- Parents are altruistic
- Parents decide on spending on education and health
- Children accumulate health and human capital
- Government policies on health and education
- Health and human capital accumulated during childhood reflect in the adult's initial health and human capital
- Once adults, health and human capital evolves exogenously

- Overlapping generations
- Household consists of one child and one parent
- Children live for 3 periods, adults for 5
- Parents are altruistic
- Parents decide on spending on education and health
- Children accumulate health and human capital
- Government policies on health and education
- Health and human capital accumulated during childhood reflect in the adult's initial health and human capital
- Once adults, health and human capital evolves exogenously
- No savings

• Human capital is bidimensional: health and ability.

- Human capital is bidimensional: health and ability.
- Ability ⇒ eventually determines labor market productivity

- Human capital is bidimensional: health and ability.
- Ability ⇒ eventually determines labor market productivity
- Health capital:
 - Affects ability production ⇒ enters human capital production of children as an input
 - Determines physical capacity of exploiting human capital ⇒ determines hours devoted to labor market for adults

- Human capital is bidimensional: health and ability.
- Ability ⇒ eventually determines labor market productivity
- Health capital:
 - Affects ability production ⇒ enters human capital production of children as an input
 - Determines physical capacity of exploiting human capital ⇒ determines hours devoted to labor market for adults
- Dynamic complementarity and self-productivity of human capital (Cunha, Heckman, Schennach 2010) ⇒ multiplicative effect

• Parents of age t, (A, H), A and H are stochastic, follow Markov process.

- Parents of age t, (A, H), A and H are stochastic, follow Markov process.
- Parental income is $AT_t(H)$.

- Parents of age t, (A, H), A and H are stochastic, follow Markov process.
- Parental income is $AT_t(H)$.
- Children of age j, (a, h).

- Parents of age t, (A, H), A and H are stochastic, follow Markov process.
- Parental income is $AT_t(H)$.
- Children of age j, (a, h).
- Children are born with innate ability a^* and innate health h^* , correlated with the parental innate ability A^* and innate health H^* , correspondingly.

- Parents of age t, (A,H), A and H are stochastic, follow Markov process.
- Parental income is $AT_t(H)$.
- Children of age j, (a, h).
- Children are born with innate ability a^* and innate health h^* , correlated with the parental innate ability A^* and innate health H^* , correspondingly.
- So, $a_1 = a^*$, $h_1 = h^*$, after that a and h evolve endogenously as a result of parental decisions, governmental policy and luck.

Model. Education

• "Early" Education (j = 1, 2)

- Given parental income and child's ability a, parents decide on spending into early education (e) of their children.
- Government spends g on every child on early education. Parents take g into account while deciding on e.
- Given a,h,e,g, and a shock υ , ability production:

$$a' = f(a, h, e, g, v).$$

Model. Education

• "Early" Education (j = 1, 2)

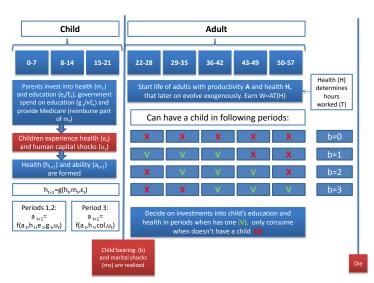
- Given parental income and child's ability a, parents decide on spending into early education (e) of their children.
- ullet Government spends g on every child on early education. Parents take g into account while deciding on e.
- Given a,h,e,g, and a shock υ , ability production:

$$a' = f(a, h, e, g, v).$$

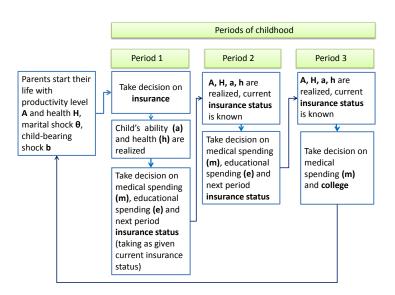
• College (j = 3)

- ullet Parents decide whether to send children to college or not, given the tuition fee E.
- Government provides income-dependent college subsidies (similar to Restuccia and Urrutia, 2004)
- Given a, h, college, v the initial (adult) labor market productivity is defined:

$$A' = f(a, h, col, v).$$



- Given h, parents decide how much to spend on health of their children (m).
- Medical expenditure, together with past levels of health, enter into health production function. But these processes are subject to shocks.
- Health production function:


$$h' = g(h, m, \varepsilon).$$

- Government provides public insurance policy (Medicaid) for poor, means-tested transfers, to partially reimburse m.
- Parents can purchase private isurance: an upfront payment p_{ins} that allows to partially reimburse m.

Model.Timing

Model. Timing of Households Decisions

Household Problem

- Households maximize their lifetime utility.
- Per-period utility:

$$u(c) = \frac{c^{1-\sigma}}{1-\sigma}.$$

Household Problem

- Households maximize their lifetime utility.
- Per-period utility:

$$u(c) = \frac{c^{1-\sigma}}{1-\sigma}.$$

Childless parents state space $\mathbf{x} = \{A, H, \theta, b, A^*, H^*\}.$

$$V_{t,0}(\mathbf{x}) = \max \left\{ u(c) + \beta E_{A',H'} V_{t+1,j}(\mathbf{x}') \right\},\,$$

subject to

$$c = (1 - \tau)T_t(H)A,$$

and

$$j = \left\{ \begin{array}{l} \text{0, } b=0, \text{ or } b=1 \text{ and } t>3, \text{ or } b=2 \text{ and } t=1 \text{ or } t>4, \\ \text{or b=3 and } t<3 \\ \text{1, otherwise} \end{array} \right.$$

A-productivity, H - health status, θ - marital status, and b - child-bearing status, au – tax rate, $T_t(H)$ – time devoted to labor market, A^* –parental innate ability, H^* -parental innate health.

Parental Problem in the First Period of Childhood

- Initial state space: $\widetilde{\mathbf{x}} = \{\theta, b, A, H, A^*, H^*\}.$
- Decision on insurance is taken

$$V_{t,1}(\tilde{\mathbf{x}}) = \max\{E_{h,a}V_{t,1}^{i}((\mathbf{x}), E_{h,a}V_{t,1}^{u}(\mathbf{x})\},\$$

• The state space after the realization of a and h: $\mathbf{x} = \{\theta, b, A, H, a, h\}.$

A problem of household with insurance

$$V_{t,1}^{i}(\mathbf{x}) = \max_{c,e,m} \{ u(c) + \beta \max \{ E_{A',H',a',h'} V_{t+1,2}^{i}(\mathbf{x'}), E_{A',H',a',h'} V_{t+1,2}^{u}(\mathbf{x'}) \} \},$$

subject to

$$c = (1 - \tau)[AT_t(H) - p_{ins}] - m + \chi^{PRV}(m) - (e - g),$$

$$a' = f(a, h, e, q, v), \text{ and } e \ge q$$

$$h' = g(h, m, \varepsilon),$$

$$Q_{H'|H}^t$$
, and $Q_{A'|A}^t$.

A problem of household with insurance

$$V_{t,1}^{i}(\mathbf{x}) = \max_{c,e,m} \{ u(c) + \beta \max\{ E_{A',H',a',h'} V_{t+1,2}^{i}(\mathbf{x'}), E_{A',H',a',h'} V_{t+1,2}^{u}(\mathbf{x'}) \} \},$$

subject to

$$c = (1 - \tau)[AT_t(H) - p_{ins}] - m + \chi^{PRV}(m) + (e - g),$$

$$a' = f(a, h, e, g, v)$$
, and $e \ge g$

$$h' = g(h, m, \varepsilon),$$

$$Q_{H'|H}^t$$
, and $Q_{A'|A}^t$.

A problem of household without insurance

$$\begin{split} V^{u}_{t,1}(\mathbf{x}) &= \max_{c,e,m} \left\{ u(c) + \right. \\ & \beta \max \left\{ E_{A',H',a',h'} V^{i}_{t+1,2}(\mathbf{x}'), E_{A',H',a',h'} V^{u}_{t+1,2}(\mathbf{x}') \right\} \right\}, \end{split}$$

subject to

$$c = (1 - \tau)[AT_t(H)] - m + \chi^{MCD}(m)\mathcal{I}_1^{MCD}(AT_t(H)) - (e - g),$$

$$a' = f(a, h, e, g, v)$$
, and $e \ge g$,

$$h' = g(h, m, \varepsilon),$$

$$Q_{H'|H}^t$$
, and $Q_{A'|A}^t$.

A problem of household without insurance

$$\begin{split} V^{u}_{t,1}(\mathbf{x}) &= \max_{c,e,m} \left\{ u(c) + \\ \beta \max \left\{ E_{A',H',a',h'} V^{i}_{t+1,2}(\mathbf{x}'), E_{A',H',a',h'} V^{u}_{t+1,2}(\mathbf{x}') \right\} \right\}, \end{split}$$

subject to

$$c = (1 - \tau)[AT_t(H)] - m + \chi^{MCD}(m)\mathcal{I}_1^{MCD}(AT_t(H)) - (e - g),$$

$$a' = f(a, h, e, g, v)$$
, and $e \ge g$,

$$h' = g(h, \mathbf{m}, \varepsilon),$$

$$Q_{H'|H}^t$$
, and $Q_{A'|A}^t$.

- State space $\mathbf{x} = \{a^*, h^*, \theta, b, a, h, A, H\}.$
- Given child's insurance status parents choose whether to send him to college

$$V_{t,3}^{i}(\mathbf{x}) = \max\{V_{t,3}^{c,i}(\mathbf{x}), V_{t,3}^{nc,i}(\mathbf{x})\},$$

$$V^{u}_{t,3}(\mathbf{x}) = \max\{V^{c,u}_{t,3}(\mathbf{x}), V^{nc,u}_{t,3}(\mathbf{x})\}.$$

 The value of sending the child to college and purchasing health insurance:

$$V_{t,3}^{c,i}(\mathbf{x}) = \max_{c,m} \left\{ u(c) + \beta E V_{t+1,0}(\mathbf{x}') + \psi E \hat{V}_{1,j}(\mathbf{x}'_{child,j}) \right\},\,$$

subject to

$$c = (1-\tau)[T_t(H)A) - p_{ins}] - m + \chi^{PRV}(m) - (E - \kappa(T_t(H)A)),$$

and

$$\kappa(T_t(H)A) = \max\{0, E - \phi_1(AT_t(H))^{\phi_2}\},\$$

and

$$A'_{child} = f(a, h, col, v),$$

$$H'_{child} = g(h, m, \varepsilon),$$

$$Q^t_{H'|H}, \text{and} \quad Q^t_{A'|A}.$$

 The value of sending the child to college and purchasing health insurance:

$$V_{t,3}^{c,i}(\mathbf{x}) = \max_{c,m} \left\{ u(c) + \beta E V_{t+1,0}(\mathbf{x}') + \psi E \hat{V}_{1,j}(\mathbf{x}'_{child,j}) \right\},\,$$

subject to

$$c = (1-\tau)[T_t(H)A) - p_{ins}] - m + \chi^{PRV}(m) - (E - \kappa(T_t(H)A)),$$

and

$$\kappa(T_t(H)A) = \max\{0, E - \phi_1(AT_t(H))^{\phi_2}\},\$$

and

$$A'_{child} = f(a, h, col = 1, \upsilon),$$

$$H'_{child} = g(h, m, \varepsilon),$$

$$Q^t_{H'|H}, \text{and} \quad Q^t_{A'|A}.$$

 The value of not sending the child to college and not purchasing health insurance:

$$V_{t,3}^{nc,u}(\mathbf{x}) = \max_{c,m} \left\{ u(c) + \beta E V_{t+1,0}(\mathbf{x}') + \psi E \hat{V}_{1,j}(\mathbf{x}'_{child,j}) \right\},\,$$

subject to

$$c = (1-\tau)[T_t(H)A + t(h)a] - m + \chi^{MCD}(m)\mathcal{I}_3^{MCD}(AT_t(H)),$$

and

$$A'_{child} = f(a, h, col = 0, v),$$

$$H'_{child} = g(h, m, \varepsilon),$$

$$Q_{H'|H}^t$$
, and $Q_{A'|A}^t$.

Outline

- Motivation
- 2 Model
- 3 Estimation
- A Results
 - Baseline Model
 - Counterfactuals

Estimation

• Two-Stage Procedure:

- First Stage: everything that is possible to estimate outside of the model is estimated from the data
- Second Stage: Simulated Method of Moments

Estimation

• Two-Stage Procedure:

- First Stage: everything that is possible to estimate outside of the model is estimated from the data
- Second Stage: Simulated Method of Moments
- First Stage: discount factor (β) , risk-aversion (σ) , governmental educational spending (g), marital (θ) and child-bearing (b) shocks, parental $(T_t(H))$ and children's $(t_3(h))$ hours worked and life cycle transitions for health $(Q_{H'|H})$ and productivity $(Q_{A'|A})$, insurance functions (η^i_j, μ^i_j) .

Estimation

• Two-Stage Procedure:

- First Stage: everything that is possible to estimate outside of the model is estimated from the data
- Second Stage: Simulated Method of Moments
- First Stage: discount factor (β) , risk-aversion (σ) , governmental educational spending (g), marital (θ) and child-bearing (b) shocks, parental $(T_t(H))$ and children's $(t_3(h))$ hours worked and life cycle transitions for health $(Q_{H'|H})$ and productivity $(Q_{A'|A})$, insurance functions (η^i_j, μ^i_j) .
- **Second Stage**: insurance functions thresholds (\overline{I}_j) , college subsidy function $(\kappa(AT_t(H)))$, health and ability productions $(f(\cdot),g(\cdot))$.

Second-Step Estimation. Functional Forms

• Health:

$$Pr(h' = h_k | h, m) = \Lambda(\alpha_0^h + \alpha_1^h h + \alpha_2^h m + \alpha_3^h \cdot h \cdot m),$$

• Ability in j = 1, 2:

$$Pr(a' = a_k | a, h, e, A) = \Lambda(\alpha_0^a + \alpha_1^a a + \alpha_2^a h + \alpha_3^a e + \alpha_4^a \cdot a \cdot e + \alpha_5^a \cdot a \cdot h + \alpha_6^a \cdot A \cdot e)$$

• Productivity in j=3

$$\Pi = \alpha_{30}^{a} + \alpha_{31}^{a} a + \alpha_{32}^{a} h + \alpha_{33}^{a} col + \alpha_{34}^{a} \cdot a \cdot h + \alpha_{35}^{a} \cdot h \cdot col + \alpha_{36}^{a} \cdot a \cdot col + \varepsilon_{3}.$$

Second-Step Estimation. Functional Forms

• Health:

$$Pr(h' = h_k | h, m) = \Lambda(\alpha_0^h + \alpha_1^h h + \alpha_2^h m + \alpha_3^h \cdot h \cdot m),$$

• Ability in j = 1, 2:

$$Pr(a' = a_k | a, h, e, A) = \Lambda(\alpha_0^a + \alpha_1^a a + \alpha_2^a h + \alpha_3^a e + \alpha_4^a \cdot a \cdot e + \alpha_5^a \cdot \frac{a}{a} \cdot h + \alpha_6^a \cdot A \cdot e)$$

• Productivity in j=3

$$\Pi = \alpha_{30}^a + \alpha_{31}^a a + \alpha_{32}^a \mathbf{h} + \alpha_{33}^a col + \alpha_{34}^a \cdot \mathbf{a} \cdot \mathbf{h} + \alpha_{35}^a \cdot \mathbf{h} \cdot \mathbf{col} + \alpha_{36}^a \cdot \mathbf{a} \cdot \mathbf{col} + \varepsilon_3.$$

Second-Step Estimation

• The Estimator:

$$\widehat{\Omega} = argmin(\widehat{\pi} - \pi(\Omega))'\widehat{W}(\widehat{\pi} - \pi(\Omega)),$$

where Ω – vector of parameters to estimate, $\widehat{\pi}$ – data moments, $\pi(\Omega)$ –their model-based counterpart, \widehat{W} is some positive semi-definite matrix

- 39 parameters and 52 data moments.
 - $\bullet \ \{\overline{I}_1,\overline{I}_2,\overline{I}_3,p_{ins}\}$ —insurance market
 - $\{\kappa, \phi, E\}$ college education
 - $\{\alpha_0^h,\alpha_1^h,\alpha_2^h,\alpha_3^h,\alpha_{30}^h,\alpha_{31}^h,\alpha_{32}^h,\alpha_{33}^h\}$ —health production
 - $\{\alpha_0^a,\alpha_1^a,\alpha_2^a,\alpha_3^a,\alpha_4^a,\alpha_5^a,\alpha_7^a\}$ —ability production in j=1,2
 - $\{\alpha_{30}^a,\alpha_{31}^a,\alpha_{32}^a,\alpha_{33}^a,\alpha_{34}^a,\alpha_{35}^a,\alpha_{36}^a,\sigma_{inc},x_1,x_2,x_3,x_4\}$ -ability production in j=3

Model Fit

	_	
Moment	Data	Model
Intergenerational income elasticity	0.4	0.273
Probability of Moving from Q1 to Q5	0.09	0.105
Probability of Moving from Q5 to Q5	0.32	0.279
Gini coefficient	0.4	0.424
Children with public insurance, j=1	0.304	0.358
Children with public insurance, j=2	0.237	0.245
Children with public insurance, j=3	0.156	0.132
Pr(h = bad H == bad)	0.218	0.439
Pr(h = good H == good)	0.912	0.547
$Pr(h_2 = good h_1 = bad)$	0.645	0.708
$Pr(h_2 = good h_1 = good)$	0.893	0.858
$Pr(h_3 = good h_2 = bad)$	0.653	0.673
$Pr(h_3 = good h_2 = good)$	0.836	0.974
$Pr(H_1 = good h_3 = bad)$	0.503	0.76
$Pr(H_1 = good h_3 = good)$	0.796	0.819
% of people in good health in Q1	0.864	0.789
% of people in good health in Q2	0.939	0.882
% of people in good health in Q3	0.949	0.666
% of people in good health in Q4	0.967	1
% of people in good health in Q5	0.978	0.771
% of children in good health in $j=1$	0.847	0.765

Model Fit

Moment	Data	Model
Intergenerational income elasticity	0.4	0.273
Probability of Moving from Q1 to Q5	0.09	0.105
Probability of Moving from Q5 to Q5	0.32	0.279
Gini coefficient	0.4	0.424
Children with public insurance, j=1	0.304	0.358
Children with public insurance, j=2	0.237	0.245
Children with public insurance, $j=3$	0.156	0.132
Pr(h = bad H == bad)	0.218	0.439
Pr(h = good H == good)	0.912	0.547
$Pr(h_2 = good h_1 = bad)$	0.645	0.708
$Pr(h_2 = good h_1 = good)$	0.893	0.858
$Pr(h_3 = good h_2 = bad)$	0.653	0.673
$Pr(h_3 = good h_2 = good)$	0.836	0.974
$Pr(H_1 = good h_3 = bad)$	0.503	0.76
$Pr(H_1 = good h_3 = good)$	0.796	0.819
% of people in good health in Q1	0.864	0.789
% of people in good health in Q2	0.939	0.882
% of people in good health in Q3	0.949	0.666
% of people in good health in Q4	0.967	1
% of people in good health in Q5	0.978	0.771
% of children in good health in $j=1$	0.847	0.765

Model Fit

Moment	Data	Model
Intergenerational income elasticity	0.4	0.273
Probability of Moving from Q1 to Q5	0.09	0.105
Probability of Moving from Q5 to Q5	0.32	0.279
Gini coefficient	0.4	0.424
Children with public insurance, j=1	0.304	0.358
Children with public insurance, j=2	0.237	0.245
Children with public insurance, j=3	0.156	0.132
Pr(h = bad H == bad)	0.218	0.439
Pr(h = good H == good)	0.912	0.547
$Pr(h_2 = good h_1 = bad)$	0.645	0.708
$Pr(h_2 = good h_1 = good)$	0.893	0.858
$Pr(h_3 = good h_2 = bad)$	0.653	0.673
$Pr(h_3 = good h_2 = good)$	0.836	0.974
$Pr(H_1 = good h_3 = bad)$	0.503	0.76
$Pr(H_1 = good h_3 = good)$	0.796	0.819
% of people in good health in Q1	0.864	0.789
% of people in good health in Q2	0.939	0.882
% of people in good health in Q3	0.949	0.666
% of people in good health in Q4	0.967	1
% of people in good health in Q5	0.978	0.771
% of children in good health in $j=1$	0.847	0.765

Model Fit II

Moment	Data	Model
Share of students with federal grant	0.64	0.322
Share of college graduates	0.44	0.615
Average college subsidy	4.777	3.84
% of college educated people in Q1	0.18	0.26
% of college educated people in Q2	0.27	0.165
% of college educated people in Q3	0.349	0.819
% of college educated people in Q4	0.42	0.953
% of college educated people in Q5	0.65	0.956
Pr(a = high Q1)	0.368	0.512
Pr(a = high Q2)	0.543	0.522
Pr(a = high Q3)	0.618	0.529
Pr(a = high Q4)	0.677	0.529
Pr(a = high Q5)	0.737	0.529
Pr(a' = high a = low, h = bad, e = 1)	0.076	0.206
Pr(a' = high a = low, h = good, e = 1)	0.207	0.344
Pr(a' = high a = high, h = bad, e = 1)	0.615	0.334
Pr(a' = high a = high, h = good, e = 1)	0.686	0.502
Pr(a' = high a = low, h = bad, e = 2)	0.218	0.314
Pr(a' = high a = low, h = good, e = 2)	0.329	0.48
Pr(a' = high a = high, h = bad, e = 2)	0.636	0.482
Pr(a' = high a = high, h = good, e = 2)	0.796	0.653

Model Fit II

Moment	Data	Model
Share of students with federal grant	0.64	0.322
Share of college graduates	0.44	0.615
Average college subsidy	4.777	3.84
% of college educated people in Q1	0.18	0.26
% of college educated people in Q2	0.27	0.165
% of college educated people in Q3	0.349	0.819
% of college educated people in Q4	0.42	0.953
% of college educated people in Q5	0.65	0.956
Pr(a = high Q1)	0.368	0.512
Pr(a = high Q2)	0.543	0.522
Pr(a = high Q3)	0.618	0.529
Pr(a = high Q4)	0.677	0.529
Pr(a = high Q5)	0.737	0.529
Pr(a' = high a = low, h = bad, e = 1)	0.076	0.206
Pr(a' = high a = low, h = good, e = 1)	0.207	0.344
Pr(a' = high a = high, h = bad, e = 1)	0.615	0.334
Pr(a' = high a = high, h = good, e = 1)	0.686	0.502
Pr(a' = high a = low, h = bad, e = 2)	0.218	0.314
Pr(a' = high a = low, h = good, e = 2)	0.329	0.48
Pr(a' = high a = high, h = bad, e = 2)	0.636	0.482
Pr(a' = high a = high, h = good, e = 2)	0.796	0.653

Model Fit II

Moment	Data	Model
Share of students with federal grant	0.64	0.322
Share of college graduates	0.44	0.615
Average college subsidy	4.777	3.84
% of college educated people in Q1	0.18	0.26
% of college educated people in Q2	0.27	0.165
% of college educated people in Q3	0.349	0.819
% of college educated people in Q4	0.42	0.953
% of college educated people in Q5	0.65	0.956
Pr(a = high Q1)	0.368	0.512
Pr(a = high Q2)	0.543	0.522
Pr(a = high Q3)	0.618	0.529
Pr(a = high Q4)	0.677	0.529
Pr(a = high Q5)	0.737	0.529
Pr(a' = high a = low, h = bad, e = 1)	0.076	0.206
Pr(a' = high a = low, h = good, e = 1)	0.207	0.344
Pr(a' = high a = high, h = bad, e = 1)	0.615	0.334
Pr(a' = high a = high, h = good, e = 1)	0.686	0.502
Pr(a' = high a = low, h = bad, e = 2)	0.218	0.314
Pr(a' = high a = low, h = good, e = 2)	0.329	0.48
Pr(a' = high a = high, h = bad, e = 2)	0.636	0.482
Pr(a' = high a = high, h = good, e = 2)	0.796	0.653

Outline

- Motivation
- 2 Model
- Estimation
- 4 Results
 - Baseline Model
 - Counterfactuals

• Health production function:

$$Pr(h' = h_k | h, m) = \Lambda(\alpha_0^h + \alpha_1^h h + \alpha_2^h m + \alpha_3^h \cdot h \cdot m),$$

• Health production function:

$$Pr(h' = h_k | h, m) = \Lambda(\alpha_0^h + \alpha_1^h h + \alpha_2^h m + \alpha_3^h \cdot h \cdot m),$$

Baseline transition probabilities:

	Periods 1,2 \overline{m} =5.49				Period 3 $\overline{m} = 9.22$	
\overline{m}	$h_j = bad$	$h_j = good$	Δh	$h_j = bad$	$h_j = good$	Δh
$Pr(h_{j+1} = good h_j)$	0.668	0.889	0.221	0.354	0.876	0.522

• Health production function:

$$Pr(h' = h_k | h, m) = \Lambda(\alpha_0^h + \alpha_1^h h + \alpha_2^h m + \alpha_3^h \cdot h \cdot m),$$

Baseline transition probabilities:

	1	Periods 1,2			Period 3	
	$\overline{m} = 5.49$				$\overline{m} = 9.22$	
\overline{m}	$h_j = bad$	$h_j = good$	Δh	$h_j = bad$	$h_j = good$	Δh
$Pr(h_{j+1} = good h_j)$	0.668	0.889	0.221	0.354	0.876	0.522

Marginal effects:

	Periods 1,2				Period 3	
	h = bad	h=good	Δh	h = bad	h=good	Δh
$\overline{m} + \$1,000$	0.0221	0.00387	0.2028	0.0252	0.00799	0.505

• Health production function:

$$Pr(h' = h_k | h, m) = \Lambda(\alpha_0^h + \alpha_1^h h + \alpha_2^h m + \alpha_3^h \cdot h \cdot m),$$

Baseline transition probabilities:

	ı	Periods 1,2			Period 3	
	$\overline{m} = 5.49$				$\overline{m} = 9.22$	
\overline{m}	$h_j = bad$	$h_j = good$	Δh	$h_j = bad$	$h_j = good$	Δh
$Pr(h_{j+1} = good h_j)$	0.668	0.889	0.221	0.354	0.876	0.522

Marginal effects:

		Periods 1,2			Period 3	
	h = bad	h=good	Δh	h = bad	h=good	Δh
$\overline{m} + \$1,000$	0.0221	0.00387	0.2028	0.0252	0.00799	0.505

 Marginal spendings on health are relatively more effective for poor children.

• Ability production function:

$$Pr(a' = a_k | a, h, e, A) = \Lambda(\alpha_0^a + \alpha_1^a a + \alpha_2^a h + \alpha_3^a e + \alpha_4^a \cdot a \cdot e + \alpha_5^a \cdot \frac{a}{6} \cdot h + \alpha_6^a \cdot A \cdot e)$$

Ability production function:

$$Pr(a' = a_k | a, h, e, A) = \Lambda(\alpha_0^a + \alpha_1^a a + \alpha_2^a h + \alpha_3^a e + \alpha_4^a \cdot a \cdot e + \alpha_5^a \cdot \frac{a}{a} \cdot h + \alpha_6^a \cdot A \cdot e)$$

• Baseline transition probabilities (periods 1,2):

$\overline{\overline{e}} = 4.12, \ \overline{A} = 109$	Health=bad			H	ealth=Good	
	$a_i = low$	$a_i = high$	Δa	$a_i = low$	$a_i = high$	Δa
$Pr(a_{j+1} = high a_j = a_i, h)$	0.0836	0.392	0.308	0.203	0.655	0.452

Ability production function:

$$Pr(a' = a_k | a, h, e, A) = \Lambda(\alpha_0^a + \alpha_1^a a + \alpha_2^a h + \alpha_3^a e + \alpha_4^a \cdot a \cdot e + \alpha_5^a \cdot \frac{a}{a} \cdot h + \alpha_6^a \cdot A \cdot e)$$

• Baseline transition probabilities (periods 1,2):

$\overline{e} = 4.12, \ \overline{A} = 109$	ŀ	lealth=bad		H	ealth=Good	
	$a_i = low$	$a_i = high$	Δa	$a_i = low$	$a_i = high$	Δa
$Pr(a_{j+1} = high a_j = a_i, h)$	0.0836	0.392	0.308	0.203	0.655	0.452

• Marginal effects:

	Health=bad			Health=Good		
	a = low	a=high	Δa	a = low	a=high	Δa
$\overline{e} + \$1,000, \overline{A}$	0.0173	0.15	0.4411	0.0414	0.298	0.7086

Ability production function:

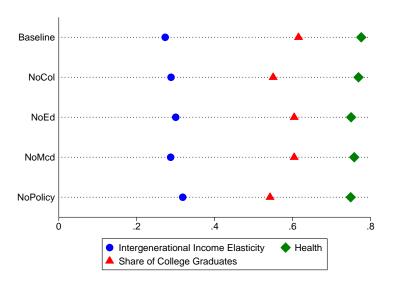
$$Pr(a' = a_k | a, h, e, A) = \Lambda(\alpha_0^a + \alpha_1^a a + \alpha_2^a h + \alpha_3^a e + \alpha_4^a \cdot a \cdot e + \alpha_5^a \cdot \frac{a}{a} \cdot h + \alpha_6^a \cdot A \cdot e)$$

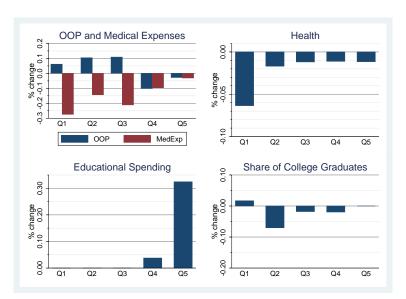
• Baseline transition probabilities (periods 1,2):

$\overline{e} = 4.12, \ \overline{A} = 109$	ŀ	Health=bad		H	ealth=Good	
	$a_i = low$	$a_i = high$	Δa	$a_i = low$	$a_i = high$	Δa
$Pr(a_{j+1} = high a_j = a_i, h)$	0.0836	0.392	0.308	0.203	0.655	0.452

• Marginal effects:

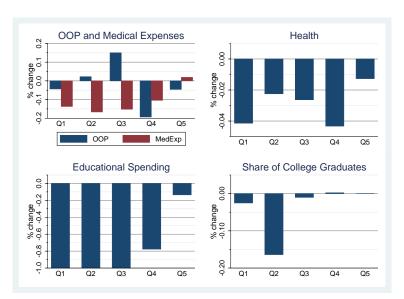
	Health=bad			Health=Good		
	a = low	a=high	Δa	a = low	a=high	Δa
$\overline{e} + \$1,000, \overline{A}$	0.0173	0.15	0.4411	0.0414	0.298	0.7086


• Investing just in education is not enough. Health matters a lot.


Counterfactual Policy Experiments

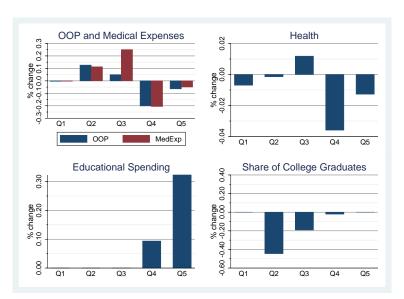
- Shutting down policies (today):
 - Role of health policies: shut down Medicaid
 - Role of educational policies: shut down educational policies
 - Role of policy interactions: shut down educational and medical policies together
- Experiment with health policies: Obamacare, income-dependent, conditional transfer (in progress)
- Cost-neutral reallocation of governmental resources between existing policies (in progress)
- Other welfare programs (Head Start, free lunch)

Aggregate Results


No Medicaid

No Medicaid

- Medical spending decrease, more for poor than for rich (while parental out-of-pocket expenses increase for poor)
- Gap between the educational spending of rich and poor parents widens: poor people do not invest in education, while rich people decrease their investments in health in order to increase their investments in education
- Average **health** declines, it declines more for poor children (from 72.5% to 67.9%), than for reach children (86.8% to 85.8%)


No Early Education Policy

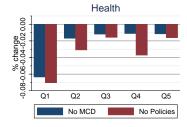
No Early Education Policy

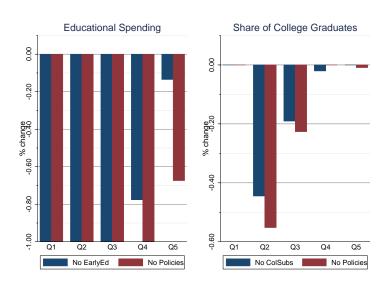
- **Health** slightly decrease and **college attainment** decreases for poor, parents spend slightly less on health.
- Gap in parental educational spending widens: poor parents do not compensate for lost governmental subsidies while rich parents do.


No College Subsidies


No College Subsidies Policy

- Lower college attainment of all but the top quintile.
- Increase in early educational spendings for rich families → gap between educational spending of poor and rich widens.
- Rich families slightly substitute health spending towards early education spending.
- Middle class people invest more in health and receive less college education.

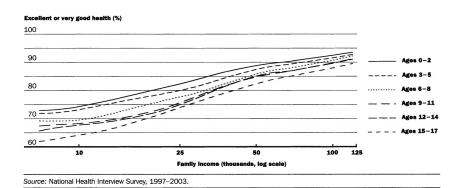

Policy Interaction


Policy Interaction: Health

Policy Interaction: Education

Policy Interaction

- **Health** decreases much more than in only Medicaid shut-down case (from 72.5 to 67.4% for 1st quintile and from 86.8 to 85.4% for the top quintile)
- College attainment decreases more than in only college subsidies shut-down case (no children from the lower quintile receive college education, decreases more than two-fold for the 2nd quintile, decreases for the rest of quintiles as well)
- Medical spending decrease for everyone
- Rich parent try to compensate for early education subsidies, but much less than in only early subsidies shut-down.


Summary of Results

- The aggregate effect of shutting down policies on intergenerational income elasticity:
 - 5% increase for Medicaid,
 - 10% increase for early education,
 - 5.5% increase for late education subsidies,
 - 16.5% increase for all policies.
- Distributional heterogeneity in responses to policy changes
- Trade-off between investments in health and education is stronger for poor people, they have to adjust for policies more, than reach people
- Gaps in decisions of poor and reach households widen
- Interaction effect of medical and educational policies

THANK YOU!

APPENDIX

Health Differences

Source: Case and Paxton, 2006

Intergenerational Correlation of Health

 Correlation of child's health at birth with parental health in the period the child is born (PSID):

Parent/Child	Good	Bad
Good	0.912	0.088
Bad	0.782	0.218

[&]quot;Excellent", "very good", and "good" = good health, "fair" or "poor" = bad health.

Intergenerational Correlation of Health

 Correlation of child's health at birth with parental health in the period the child is born (PSID):

Parent/Child	Good	Bad
Good	0.912	0.088
Bad	0.782	0.218

[&]quot;Excellent", "very good", and "good" = good health, "fair" or "poor" = bad health.

Children in good health by age

Age	0-7	8-14	15-21
Fraction of children in good health	0.86	0.86	0.81

Changes in Child's Ability

• Transitions across ability levels for children of age 0-7 to 8-14 and 8-14 to 15-21.

Changes in Child's Ability

 Transitions across ability levels for children of age 0-7 to 8-14 and 8-14 to 15-21.

Low Educational Spending

Bad Health				
Ability	Low	High		
Low	0.924	0.076		
High	0.385	0.615		

Good Health					
Ability	Low	High			
Low	0.793	0.207			
High	0.314	0.686			

High Educational Spending

Bad health				
Ability	Low	High		
Low	0.782	0.218		
High	0.364	0.636		

Good Health				
Ability	Low	High		
Low	0.671	0.329		
High	0.204	0.796		

Changes in Child's Ability

 Transitions across ability levels for children of age 0-7 to 8-14 and 8-14 to 15-21.

Low Educational Spending

Bad Health				
Ability	Low	High		
Low	0.924	0.076		
High	0.385	0.615		

Good Health				
Ability	Low	High		
Low	0.793	0.207		
High	0.314	0.686		

High Educational Spending

Bad health			
Ability	Low	High	
Low	0.782	0.218	
High	0.364	0.636	

Good Health				
Ability	Low	High		
Low	0.671	0.329		
High	0.204	0.796		

Changes in Child's Ability

 Transitions across ability levels for children of age 0-7 to 8-14 and 8-14 to 15-21.

Low Educational Spending

Bad Health		
Ability	Low	High
Low	0.924	0.076
High	0.385	0.615

Good Health			
_	Ability	Low	High
_	Low	0.793	0.207
	High	0.314	0.686

High Educational Spending

Bad health		
Ability	Low	High
Low	0.782	0.218
High	0.364	0.636

Good Health		
Ability	Low	High
Low	0.671	0.329
High	0.204	0.796

Changes in Child's Ability

 Transitions across ability levels for children of age 0-7 to 8-14 and 8-14 to 15-21.

Low Educational Spending

Bad Health		
Ability	Low	High
Low	0.924	0.076
High	0.385	0.615

Good Health		
Ability	Low	High
Low	0.793	0.207
High	0.314	0.686

High Educational Spending

Bad health		
Ability	Low	High
Low	0.782	0.218
High	0.364	0.636

Good Health		
Ability	Low	High
Low	0.671	0.329
High	0.204	0.796

Changes in Child's Ability

 Transitions across ability levels for children of age 0-7 to 8-14 and 8-14 to 15-21.

Low Educational Spending

Bad Health		
Ability	Low	High
Low	0.924	0.076
High	0.385	0.615

Good Health		
Ability	Low	High
Low	0.793	0.207
High	0.314	0.686

High Educational Spending

Bad health		
Ability	Low	High
Low	0.782	0.218
High	0.364	0.636

Good Health		
Ability	Low	High
Low	0.671	0.329
High	0.204	0.796

Effects of Health on Labor Supply

Parental weekly hours worked conditional on health status (PSID):

Age/Health	Bad	Good
22-28	42	54
29-35	47	58
36-42	50	59
43-49	50	60
50-57	46	57

No Medicaid

Moment	Baseline	No Medicaid	
Intergenerational lifetime income elasticity	0.273	0.287	
Probability of Moving from Q1 to Q5	0.105	0.1	
Probability of Moving from Q5 to Q5	0.279	0.28	
Gini coefficient	0.424	0.425	
Children in good health	0.776	0.758	
Share of College Graduates	0.615	0.604	
Medical Expenses in \$1000			
Average Medical Expenditure	8.042	7.118	
Educational Spendings in \$1000			
Private Educational Expenditure	0.40	1.5	
Tax rate	0.124	0.101	

No Medicaid

Moment	Baseline	No Medicaid
Ave	erage Medical Ex	openses in \$1000
Q1	4.67	3.39
Q2	5.59	4.79
Q3	6.26	4.94
Q4	7.49	6.77
Q5	16.2	15.7
Average Medical OOP Expenses in \$1000		
Q1	2.77	2.94
Q2	2.69	2.97
Q3	3.4	3.77
Q4	6.52	5.86
Q5	10.9	10.6
Share of Children in Good Health		
Q1	0.725	0.679
Q2	0.713	0.701
Q3	0.761	0.752
Q4	0.809	0.8
Q5	0.868	0.858

No Medicaid

Moment	Baseline	No Medicaid
Averag	e Early Educa	ntional Spending in \$1000
Q1	0	0
Q2	0	0
Q3	0	0
Q4	0	0.487
Q5	1.99	6.82

No Early Education Policy

Moment	Baseline	No g
Intergenerational lifetime income elasticity	0.273	0.3
Probability of Moving from Q1 to Q5	0.105	0.098
Probability of Moving from Q5 to Q5	0.279	0.273
Gini coefficient	0.424	0.425
Children in good health	0.776	0.75
Share of College Graduates	0.615	0.604
Medical Expenses in \$1000		
Average Medical Expenditure	8.042	7.4
Educational Spendings in \$	1000	
Private Educational Expenditure	0.408	2.8
Tax rate	0.124	0.0263

No Early Education Policy

Moment	Baseline	No g	
Average	Early Education	nal Spending in \$10	00
Q1	0	0	
Q2	0	0	
Q3	0	0	
Q4	0	2.89	
Q5	1.99	12.89	
Sha	are of College E	ducated Children	
Q1	0.0119	0.0116	
Q2	0.299	0.25	
Q3	0.782	0.774	
Q4	0.98	0.982	
Q5	1	1	

No Early Education Policy

Moment	Baseline	No g
Effectiv	e Average Me	dical Expenses in \$1000
Q1	4.67	4.03
Q2	5.59	4.66
Q3	6.26	5.31
Q4	7.49	6.71
Q5	16.2	16.5
Average Medical Out-of-Pocket Expenses in \$1000		
Q1	2.77	2.65
Q2	2.69	2.75
Q3	3.4	3.91
Q4	6.52	5.26
Q5	10.9	10.4
Share of Children in Good Health		
Q1	0.725	0.695
Q2	0.713	0.697
Q3	0.761	0.741
Q4	0.809	0.774
Q5	0.868	0.857

No College Subsidies Policy

Moment	Baseline	No colsubs	
Intergenerational lifetime income elasticity	0.273	0.288	
Probability of Moving from Q1 to Q5	0.105	0.0973	
Probability of Moving from Q5 to Q5	0.279	0.299	
Gini coefficient	0.424	0.432	
Children in good health	0.776	0.769	
Share of College Graduates	0.615	0.55	
Medical Expenses in \$1000			
Average Medical Expenditure	8.042	8.0	
Educational Spendings in \$1000			
Private Educational Expenditure	0.408	1.6	
Tax rate	0.124	0.124	

No College Subsidies Policy

Moment	Baseline	No colsubs
Average	Early Educatio	nal Spending in \$1000
Q1	0	0
Q2	0	0
Q3	0	0
Q4	0	1.21
Q5	1.99	6.82
Shai	re of College E	ducated Children
Q1	0.0119	0
Q2	0.299	0.166
Q3	0.782	0.633
Q4	0.98	0.96
Q5	1	1

No College Subsidies Policy

Moment	Baseline	No colsubs
Effectiv	e Average Me	dical Expenses in \$1000
Q1	4.67	4.66
Q2	5.59	6.22
Q3	6.26	7.83
Q4	7.49	5.95
Q5	16.2	15.4
Average Medical Out-of-Pocket Expenses in \$1000		
Q1	2.77	2.76
Q2	2.69	3.03
Q3	3.4	3.57
Q4	6.52	5.21
Q5	10.9	10.2
Share of Children in Good Health		
Q1	0.725	0.72
Q2	0.713	0.712
Q3	0.761	0.77
Q4	0.809	0.78
Q5	0.868	0.857

Policy Interaction

Moment	Baseline	No Policies	
Intergenerational lifetime income elasticity	0.273	0.318	
Probability of Moving from Q1 to Q5	0.105	0.0906	
Probability of Moving from Q5 to Q5	0.279	0.298	
Gini coefficient	0.424	0.435	
Children in good health	0.776	0.749	
Share of College Graduates	0.615	0.542	
Medical Expenses in \$1000			
Average Medical Expenditure	8.042	6.88	
Educational Spendings in \$1000			
Private Educational Expenditure	0.408	0.972	
Tax rate	0.124	0	

Policy Interaction

Moment	Baseline	No Policies
Ave	erage Medical Ex	penses in \$1000
Q1	4.67	4.02
Q2	5.59	4.58
Q3	6.26	6.66
Q4	7.49	5.39
Q5	16.2	15.2
Average Medical OOP Expenses in \$1000		
Q1	2.77	2.69
Q2	2.69	2.88
Q3	3.4	3.98
Q4	6.52	4.99
Q5	10.9	10.4
Share of Children in Good Health		
Q1	0.725	0.674
Q2	0.713	0.691
Q3	0.761	0.749
Q4	0.809	0.779
Q5	0.868	0.854

Policy Interaction

Moment	Baseline	No Policies
Average Early Educational Spending in \$1000		
Q1	0	0
Q2	0	0
Q3	0	0
Q4	0	0
Q5	1.99	4.86
Share of College Educated Children		
Q1	0.0119	0
Q2	0.299	0.134
Q3	0.782	0.605
Q4	0.98	0.98
Q5	1	0.991