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Social Life and Economics

I “The outstanding discovery of recent historical and
anthropological research is that man’s economy, as a rule, is
submerged in his social relationships. He does not act so as
to safeguard his individual interest in the possession of
material goods; he acts so as to safeguard his social standing,
his social claims, his social assets. He values material goods
only in so far as they serve this end.” (Polanyi, 1944)

I “Economics is all about how people make choices. Sociology
is all about why they don’t have any choices to make.”
(Duesenberry, 1960)
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Where do Social Interactions Appear?

Phenomena

I Labor markets
I Career Choices
I Retirement

I Fertility

I Health

I Education Outcomes

I Violence

Mechanisms

I Peer effects
I Stigma

I Role models

I Social Norms

I Social Learning

I Social Capital?
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Questions

I What are appropriate tools for studying social interactions?

I Ethnographies

I Field Psychological Experiments & Large-Scale Experiments

I Traditional Economics Tools

I Models of social interactions: Social norms, group
membership, peer effects.
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Plan
I Network Science

I Consequences of Social Networks

I Properties of Social Networks

I Labor Markets — Weak and Strong Ties

I Peer Effects and Complementarities — Games on Networks

I Matching and Network Formation

I Social Capital

I Social Learning

I Diffusion
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Network Science
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Graphs
A directed graph G is a pair (V ,E) where V is a set of vertices, or
nodes, and E is a set of Edges. In a directed graph, an edge is an
ordered pair (v,w) of vertices, meaning that there is a connection
from v to w. In an undirected graph, an edge is an unordered pair
of vertices.

A B

C

D

V =
{
A ,B,C,D

}
G =

{
(A ,B), (B,C), (B,D)

}

A B

C

D

V =
{
A ,B,C,D

}
G =

{
(A ,B), (C,B),

(B,D), (D,B)
}
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The degree of a node in an undirected graph G is
#{w : (v,w) ∈ E}.

A path of G is an ordered list of nodes (v0, . . . , vN) such that
(vn−1, vn) ∈ E for all 1 ≤ n ≤ N. A geodesic is a shortest-length
path connecting v0 and vn.

A B

C

D

degC = 1.

A B

C

D

(C,B,D)
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Graphs

A subset of vertices is connected if there is a path between every
two of them. A component of G is a set of vertices maximal with
respect to connectedness. A clique is a component for which all
possible edges are in E.
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A graph G has a matrix representation. A adjacency matrix for a
graph (V ,E) is a #V ×#V matrix A such that avw = 1 if
(v,w) ∈ E, and 0 otherwise. A weighted adjacency matrix has
non-zero numbers corresponding to edges in E.



0 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0


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Common Network Measurements

I Graph diameter — maximal geodesic length.

I Mean geodesic length.

I Degree distribution.

I Clustering coefficient — the average (over vertices) of the
number of length 2 paths containing i that are part of a
triangle. (Measures degree of transitivity.)

I Component size distribution
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Graphs

I 3 Components,
{A ,B}, {C,D,E},
{F , . . . ,M}.

I Min degree = 1.
I Max deg = 4.
I Diam Comp. 3 = 3.
I Degree Dist. 1 :

4/13, 2 : 4/13, 3 :
4/13, 4 : 1/13.

I Clustering coefficient:
1/15.
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Probabilistic Models of Graphs

Going beyond descriptive statistics of individual networks to
inference about network properties requires probabilistic models of
network structure.
I Having observed data from some networks, what can I infer

about the properties of other networks?
I Having observed some data from a network, what can I infer

about other properties of this network?

Two kinds of models
I Descriptive statistics: Stochastic block models, exponential

random graphs
I Structural models: Models of network formation.

I Algorithmic
I Strategic
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Stochastic Social Network Analysis

I Treat networks as realizations of variables
I Propose a model for the distribution of those variables
I Fit the model to some observed data
I With the learned model

I Interpret the parameters to gain insight into the properties of
the network

I Use the model to predict properties of the network or of other
networks
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Erdös-Rényi Random Graphs
Undirected graph. Every pair of vertices is chosen as an edge
independently with probability p.

Poisson random graphs: A sequence of graphs Gn with |Vn | = n
and p such that p · (n − 1)→ z.

Large n facts:

I Phase transition at z = 1.
I Low-density: Exponential component

size distribution with a finite limit
mean.

I High-density: a giant connected
component of size O(n). Remainder
size distribution exponential . . . .

I Clustering coefficient is C2 = O(n−1).
I Poisson degree distribution with

mean z.

Simulation of Erdös-Rényi

random sets on 300 nodes.
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Preferential Attachment

I A source of power laws.

I Introduced by Eggenberger and Polya (1923).

I Popularized by Zipf (1949) (city size) and Simon (1955)
(wealth).
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Preferential Attachment

A directed graph.
I A vertex set V of size N.
I For nodes i > 1, with probability p i links to a randomly chosen

node j < i.
I With probability (1 − p) i links to the immediate ancestor of j.

The graph is surely connected.

For large n the fraction of nodes with in-degree k is 1/k r where r
depends on p. The fraction Pr of vertices with r edges converges

as N gets large, and Pr = Θ(r−
2−p
1−p ). See Kumar et al. (2000).
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Preferential Attachment

19 / 152



Consequences of Social
Networks
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Glaeser Sacerdote and Scheinkman 1996

We believe that the most puzzling aspect of crime is not its overall
level, or that level’s relationship with the overall quantity of
deterrence. Rather, . . . , we believe that the most inexplicable
aspect of crime is its large variance across time and space.

If agents’ decisions are independent, then city crime levels
represent averages of large numbers of independent decisions.
Elementary statistics tells us that these averages should be free of
the effects of random idiosyncratic error terms and they should be
close to the expected population mean.

However, even casual empiricism suggests that differences in
observable local area characteristics can account for little of the
variation in crime rates across cities in the U.S. or across precincts
in New York City.
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A Model (of sorts)

I 2N + 1 individuals live on the integer lattice at points
−N, . . . ,N.

I Type 0s never commit a crime; Type 1’s always do; Type 2’s
imitate the neighbor to the right.

I Type of individual i is pi .
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A Model (of sorts)

I Expected distance between fixed agents determines group
size — range of interaction effects.

I Social interactions magnify the effect of fixed agents.

E{ai} =
p1

p0 + p1
≡ p, Sn =

∑
|i|≤n

ai − p
2n + 1

.

√
2n + 1Sn → N(0,σ2), σ2 = p(1 − p)

2 − π
π

where π = p0 + p1.
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Adoption of a New Technology
Conley and Udry (2010)

I The adoption of new technology is a central feature of the
transformation of farming systems during the process of
economic development.

I How do farmers learn about a new technology?
I Farmer’s own experimentation.
I Extension service, media.
I Social learning, from neighbors’ experiments.
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Adoption of a New Technology

A basic model: Besley and Case, Foster and Rosenzweig, Munshi

I A village is a learning unit.
I Some farmers experiment, others do not.
I Each farmer in the village observes the farming activities of

each of the other farmers.
I Each farmer then updates his or her own opinion regarding

the technology.
I Each farmer makes decisions regarding cultivation for the next

season.
...
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Adoption of a New Technology

I A survey was conducted of approximately 450 individuals in
four clusters of villages in Ghana’s Eastern Region over a
period of 21 months in 1996-1998. Two aspects of the data
are relevant here.

I Plot level data on inputs and outputs at frequent intervals from
the respondents.

I a variety of data on farmer interactions was collected. For
example, data was collected on respondents’ knowledge of
inputs and outputs on the plots of other respondents and on
respondents’ conversations about farming (and specifically
about fertilizer) with other farmers.
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Adoption of a New Technology

I Each respondent was matched randomly with 10 other
farmers in his/her village.

I In only 11 percent of these matches had one of the two
individuals ever received advice about farming from the other.

I In 30 percent of the matches, the respondent indicates that he
could approach the other farmer for advice about fertilizer.

I Respondents are able to provide some information on
harvests and inputs used on approximately 7 percent of
random matches between respondents and pineapple plots
cultivated by other farmers in the village.

Information flows through a sparse social network.
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Adoption of a New Technology

28 / 152



Adoption of a New Technology

I Fertilizer is used at time t to produce output at time t + 1.

I Production is subject to a random shock. Shocks are iid draws
from a common and unknown distribution.

I Farmers are Bayesians.

I Consider both limited communication and limited information.

I Contrast pineapple production with a known technology.
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Adoption of a New Technology

We find that farmers are more likely to change input levels upon
the receipt of bad news about the profitability of their previous level
of input use, and less likely to change when they observe bad
news about the profitability of alternative levels of inputs. Farmers
tend to increase (decrease) input use when an information
neighbor achieves higher than expected profits when using more
(less) inputs than they previously used. This holds when
controlling for correlations in growing conditions, for common credit
shocks using a notion of financial neighborhoods, and across
several information metrics. Support for the interpretation of our
results as indicating learning is provided by the fact that it is novice
farmers who are most responsive to news in their information
neighborhoods. Additional support is provided by our finding no
evidence of learning when our methodology is applied to a known
maize-cassava technology.
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Properties of Social
Networks
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Some Social Networks

n – # nodes, m – # edges, z – mean degree,
l – mean geodesic length, α – exponent of degree dist.,

C(k ) - clustering coeff.s, r degree corr. coeff.
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Some Social Networks I
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Some Social Networks II
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Some Social Networks III
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Transitivity

“If two people in a social network have a friend in common, then
there is an increased likelihood that they will become friends
themselves at some point in the future.” Rappoport (1953)

I Clustering coefficient:
Fraction of connected triples
that are triangles.

I Why transitivity?
A

B

C
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Centrality

Types of Centrality Measures:

Degree Centrality How many vertices can a vertex reach directly?

Betweeness Centrality How likely is this vertex to be on the
geodesic between two randomly chosen vertices?

Closeness Centrality How fast can this vertex reach all vertices in
the network.

Eigenvector Centrality How much does this vertex influence other
important vertices?
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Centrality Degree Centrality

Which nodes are important?

Let A be the adjacency matrix for a directed graph. Aij = 1 if j
influences i. e is the vector of 1’s.

I Degree Centrality: How many nodes can a node directly
influence?

‘

cd
j =

∑
i

Aij cd = eA

38 / 152



Centrality Katz Centrality

Katz (1953) Centrality: How many nodes can a node reach?

ck
j (α) =

∑
i

∑
k>0

αk Ak


ij

ck (α) = e(I − αA)−1 − e.

Ak
ij is the number of paths of length k from i to j. The parameter α

discounts longer paths. α must be less than the largest eigenvalue
of A or the sum won’t converge. Giving each node credit for itself,

ca(α) = e + ck (α) = e(I − αA)−1.

Better still is (1 − α)ca(α) since its magnitude is bounded in α.
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Centrality Eigenvector Centrality

Eigenvector Centrality: The centrality of j is proportional to the sum
of the centralities of the nodes she influences.

ce
j = µ

∑
i

ciaij ce = µceA

where µ > 0 and ce ≥ 0.. If the network is strongly connected, then
(Perron Frobenius Theorem) there is a unique scalar µ and a one-
dimensional set of vectors c � 0 that solve this. µ is the inverse of
the Perron eigenvalue, and c is in the corresponding left
eigenspace. (Bonacich, 1987; Bonacich and Lloyd, 2001).

It is not necessary, but useful, to choose from the positive half-
eigenspace the vector whose components sum to 1, that is, of
l1-norm 1.
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Centrality Eigenvector Centrality
Suppose A is indecomposable. Assume the Perron eigenvalue of
A is 1. Let Ca(α) = diag ca(α). Let Ce = diag ce

(1 − α)Ca(α) = (1 − α)
∑
k≥0

αk Ak ,

(1 − α)Ca(α) −Ce = (1 − α)
∑
k≥0

αk (Ak −Ce)→α↑1 0,

so

lim
α→1

(1 − α)ca(α) = lim
α→1

(1 − α)eCa(α) = eCe = ce.

More generally, with Perron eigenvalue λ > 0,

lim
α→λ

(1 − α)ca(α) = lim
α→λ

(1 − α)eCa(α) = eCe = ce.

Finally, cd = limα→0 ck (α).
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Centrality α-Centrality

Two sources of centrality:
I Who you are connected to.
I What you ‘bring to the table’.

ca(α, d) = αca(α, d)A + d

= d(I − αA)−1

= d(I + αA + α2A2 + · · · )

α-centrality takes d = e:

ca(α) = ca(α, e).

42 / 152



Centrality α-Centrality
A quadratic game in which each player is influenced by the
average play of his neighbors.

ui(xi, x−i) = hixi −
x2

i

2
−
β

2
(xi − x̄i)

2, x̄i =
∑

j

aijxj.

The equilibrium is unique:

x = (1 − φ)(I − φA)−1h, φ = β/1 + β.

Average play in the population is

1
n

e · x =
1
n
(1 − φ)e (I − φA)−1 h

=
1
n
(1 − φ)ca(φ)h.

Individual i’s influence on the average choice of the population is
proportional to ca(φ).

43 / 152



Homophily

“Similarity begets friendships.”
Plato

“All things akin and like are for
the most part pleasant to each
other, as man to man, horse to
horse, youth to youth. This is the
origin of the proverbs: The old
have charms for the old, the
young for the young, like to like,
beast knows beast, ever jackdaw
to jackdaw, and all similar
sayings.” Aristotle,
Nicomachean Ethics
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Sources of Homophily

I Status Homophily: We feel more comfortable when we
interact with others who share a similar cultural background.

I Value Homophily: We often feel justified in our opinions when
we are surrounded by others who share the same beliefs.

I Opportunity Homophily: We mostly meet people like us.
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Sources of Homophily

I Fixed attributes
I Selection

I Variable attributes
I Social influence

I Identification
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Labor Markets



Job Search
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The Strength of Weak Ties

“. . . [T]he strength of a tie is a (probably linear) combination of the
amount of time, the emotional intensity, the intimacy (mutual
confiding), and the reciprocal services which characterize the tie.
Each of these is somewhat independent of the other, though the
set is obviously highly intracorrelated. Discussion of operational
measures of and weights attaching to each of the four elements is
postponed to future empirical studies. It is sufficient for the present
purpose if most of us can agree, on a rough intuitive basis,
whether a given tie is strong, weak, or absent.”

Granovetter (1973, p. 1361)
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Why do Weak Ties Matter? I

Two cliques.

A–B is a bridge.

Local bridge’s endpoints
have no common friends.

Triadic closure: A length-2
path containining only
strong edges is a closed
triad.

A

B
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Why do Weak Ties Matter? I

Two cliques.

A–B is a bridge.

Local bridge’s endpoints
have no common friends.

Triadic closure: A length-2
path containining only
strong edges is a closed
triad.

A

B

s

w
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ws

s

w
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w
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D

50 / 152



Ties and Inequality I
Montgomery (1991)

I Workers live for two periods, #W identical in both periods.
I Half of the workers are high-ability, produce 1.
I Half of the workers are low-ability, produce 0.
I Workers are observationally indistinguishable.

I Each firm employs 1 worker.
I π = employee productivity −wage.
I Free entry, risk-neutral entrepreneurs.

I Equilibrium condition: Firms expected profit is 0. Wage offers
are expected productivity.

51 / 152



Ties and Inequality II
Social Structure

I Each t = 1 worker knows at most 1 t = 2 worker.
I Each t = 1 worker has a social tie with pr = τ.
I Conditional on having a tie, it is to the same type with

probability α > 1/2.
I Assignments of a t = 1 worker to a specific t = 2 worker is

random.

I τ — “network density”
I α — “inbreeding bias”

52 / 152



Ties and Inequality III
Timing

I Firms hire period 1 workers
through the anonymous
market, clears at wage wm1.

I Production occures. Each
firm learns its worker’s
productivity.

I Firm f sets a referral offer,
wrf , for a second period
worker.

I Social ties are assigned.

I t = 1 workers with ties relay
wri .

I t = 2 workers decide either
to accept an offer or enter
the market.

I Period 2 market clears at
wage wm2.

I Production occurs

53 / 152



Ties and Inequality IV
Equilibrium

I Only firms with 1-workers will make referral offers.

I Referral wages offers are distributed on an interval [wm2,wR ].

I 0 < wm2 < 1/2.

I π2 > 0.

I wm1 = E
{

production value + referral value
}
> 1/2.
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Ties and Inequality V
Comparative Statics

α, τ ↑ =⇒



wm2 ↓

wR ↑

π2 ↑

wm1 ↑
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Ties and Inequality VI
Comparing Models

I in the market-only model, wm1 = wm2 = 1/2.

I t = 2 1-types are better off, t = 2 low types are worse off.
Social structure magnifies income inequality in the second
period.

I The total wage bill in the second period is less with social
structure.
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Peer Effects
and Complementarities

Behaviors on Networks
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Three Types of Network Effects

I Information and social learning.

I Network externalities.

I Social norms.
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A Common Regression

ωi = π0 + xiπ1 + x̄gπ2 + ygπ3 + εi

Where
I ωi is a choice variable for an individual,
I xi is a vector of individual correlates,
I x̄g is a vector of group averages of individual correlates,
I yg is a vector of other group effects, and
I εi is an unobserved individual effect.
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LIM Model The Reflection Problem

For all g ∈ G and all i ∈ g,

ωi = α+ βxi + δxg + γµi + εi (Behavior)

xg =
1

Ng
xi (Behavior)

µi =
1

Ng

∑
j∈g

E
{
ωj

}
(Equilibrium)

The reduced form is

ωi =
α

1 − γ
+ βxi +

γβ+ δ

1 − γ
xg + εi
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General Linear Network Model

ωi = β′xi + δ′
∑

j

cijxj + γ′
∑

j

aij E
{
ωj |x

}
+ ηi

This is the general linear model

Γω+ ∆x = η.

Question:
I How do we interpret the parameters?
I What kind of restrictions on the coefficients are reasonable,

and do they lead to identification.

These questions require a theoretical foundation.
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Incomplete-Information Game

I I individuals; each i described by a type vector (xi, zi) ∈ R2.
xi is publicly observable, zi is private.

I There is a Harsanyi prior ρ on the space of types R2I.
I Actions are ωi ∈ R.
I Payoff functions:

Ui(ωi,ω−i; x, zi) = θiωi −
1
2
ω2

i −
φ

2

ωi −
∑

j

aij ωj


2

I aij — peer effect of j on i.
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Private Component

To complete the model, specify how individual characteristics
matter.

θi = γxi + δ
∑

j

cijxj + z

Direct Effect Contextual Effect

cij — contextual/direct effect of j on i.
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Equilibrium

(1 + φ)

(
I −

φ

1 + φ
A
)
ω − (γI + δC)x = η

Γω+ ∆x = η.

Constraints imposed by the theory:

aii = cii = 0,
∑

j

aij =
∑

j

cij = 1.

Γii = 1 + φ,
∑
j,i

Γij = −φ, ∆ii = −(γ+ δ),
∑
j,i

∆ij = δ.

Even more constraints if you insist on A = C.
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Classical Econometrics Rank and Order Conditions

When is the first equation identified?
I Order condition: #{j /C 1}+#{j /A 1} ≥ N − 1.
I For each (γ, δ) pair there is a generic set of C-matrices such

that the rank condition is satisfied.
I If two individuals’ exclusions satisfy the order condition, there

is a generic set of C-matrices such that the rank condition is
satisfied for all γ and δ.
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Non-Linear Aggregators

Bad apple The worst student does enormous harm.

Shining light A single student with sterling outcomes can inspire
all others to raise their achievement.

Invidious comparison Outcomes are harmed by the presence of
better achieving peers.

Boutique A student will have higher achievement whenever she
is surrounded by peer with similar characteristics.
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Matching and Network
Formation

67 / 152



I Market Design

I Matching problems are models of network formation

I Bipartite matching with transferable utility
I Bipartite matching without exchange
I Generalization to networks
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Stable Matches

Given are two sets of objects X and Y . e.g. workers and firms.
Both sides have preferences over whom they are matched with,
but with no externalities, that is, given that a is matched with x, he
does not care if b is matched with y and z. The literature divides
over the information parties have when they choose partners, and
whether compensating transfers can be made. The organizing
principle is that of a stable match.

Assume w.l.o.g. |X | ≤ |Y |.

Definition: A match is one-to-one map from X to Y . A match is
stable if there are no pairs x ↔ y and x′ ↔ y′ such that y′ �x y
and x �y′ x′.
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Transferable Utility Optimality

Find the optimal match by maximizing total surplus:

v(L ∪ F) = max
x

∑
l,f

vlf xlf

s.t.
∑

f

xlf ≤ 1 for all l,∑
l

xlf ≤ 1 for all f ,

x ≥ 0

The vertices for this problem are integer solutions, that is,
non-fractional matches. A solution to the primal is an optimal
matching.
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Transferable Utility Stability

Set of laborers L and firms F . vlf is the value or surplus generated
by matching worker l and firm f .

The surplus of a match is split between the firm and worker.
Suppose i ↔ f and j ↔ g. Payments to each are wi and wj , and πi

and πj .

Since this is a division of the surplus,

wi + πf = vif and wj + πg = vjg.

If wi + πg < vig, then there is a split of the surplus vig such that i
and g would both prefer to match with each other than with their
current partners. The match is not stable. Stability requires

wi + πg ≥ vig and wj + πf ≥ vjf .
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Matching with Transferable Utility

The dual has variables for each individual and firm.

min
w,π

∑
l,f

wl + πf

s.t. πf + wl ≥ vlf for all pairs l, f ,

π ≥ 0, w ≥ 0.

Solutions to the dual satisfy the stability condition.

Complementary slackness says that matched laborer-firm pairs
split the surplus, πf + wl = vlf .
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Characterizing Matches

Theorem: A matching is stable if and only if it is optimal.

Lemma: Each laborer with a positive payoff in any stable outcome
is matched in every stable matching.

Proof: Complementary slackness.

Lemma: If laborer l is matched to firm f at stable matching x, and
there is another stable matching x′ which l likes more, then f likes
it less.

Proof: Formalize this as follows: If x is a stable matching and
〈w′, π′〉 is another stable payoff, then w′ > w implies π > π′. This
follows from complementary slackness, since
wl + πf = vlf = w′l + π′f .
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Assortative Matching Complementarities
Suppose X and Y are each partially-ordered sets, and
v : X × Y → R is a function.

Definition: v : X × Y → R has increasing differences iff x′ > x and
y′ > y implies that

v(x′, y′) + v(x, y) ≥ v(x′, y) + v(x, y′).

An important special case is where X and Y are intervals of R,
each with the usual order, and v is C2.

v(x′, y′) − v(x, y′) ≥ v(x′, y) − v(x, y).

Then

Dxv(x, y′) ≥ Dxv(x, y)

From this it follows that Dxyv(x, y) ≥ 0.
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Generalizations

I Matching without exchange. Gale and Shapley (1962).

I The roommate problem.

I Generalization of non-transferable matching to networks.
Jackson and Wolinsky (1996).
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Network Formation with Contagious Risk

Blume et al. (2013)

A set V of N agents form no more than ∆ bilateral relationships
with each other, thereby constructing a graph G = (V ,E). Each
agent receives payoff a > 0 from each of her links.

Then, cascades occur. Each node fails independently with
probably q. Each failed node transmits failure to her neighbors with
independent probability p, and so on. The edges that transmit, and
the nodes they connect are the live-edge subgraph.

A falied agent loses all benefits and pays a cost b.

πi = adi(1 − φi) − bφi

where di is the degree of agent i and φi is the probability i fails.
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Network Formation with Contagious Risk

Rawlsian welfare — minimum welfare among all agents.

Definition: A graph is stable if:
I no node can strictly increase its payoff by deleting all its

incident links (hence removing itself from the network), and
I there is no pair of unconnected nodes (i, j) such that adding

an (i, j) edge to G would make them both better off.
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Assumptions

I a > pqb.
I a < pb.
I a < qb.

We want the bounds to hold very loosely. “Separation parameter”
δ:

Assumption P(δ): There is a small constant δ such that

δ−1pqb < a < δmin{pb, qb}.
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I Results provide asymptotically tight characterizations of the
welfare obtained by both socially optimal and stable graphs.

I If each node forms more than 1/p links, the live-edge
subgraph has a giant connected component.

I “. . . , we find roughly that social optimality occurs just beyond
the edge of a phase transition that controls how failures
propagate, while stable graphs lie slightly further still past this
phase transition, at a point where most of the welfare has
already been wiped out.”
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Social Capital
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Networks and Social Capital

“the aggregate of the actual or potential resources which are linked to possession
of a durable network of more or less institutionalized relationships of mutual
acquaintance or recognition.” (Bourdieux and Wacquant, 1992)

“the ability of actors to secure benefits by virtue of membership in social networks
or other social structures.” (Portes, 1998)

“features of social organization such as networks, norms, and social trust that
facilitate coordination and cooperation for mutual benefit.” (Putnam, 1995)

“Social capital is a capability that arises from the prevalence of trust in a society
or in certain parts of it. It can be embodied in the smallest and most basic social
group, the family, as well as the largest of all groups, the nation, and in all the
other groups in between. Social capital differs from other forms of human capital
insofar as it is usually created and transmitted through cultural mechanisms like
religion, tradition, or historical habit.” (Fukuyama, 1996)

“naturally occurring social relationships among persons which promote or assist
the acquisition of skills and traits valued in the marketplace. . . ” (Loury, 1992)
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Networks and Social Capital

“. . . social capital may be defined operationally as resources
embedded in social networks and accessed and used by actors for
actions. Thus, the concept has two important components: (1) it
represents resources embedded in social relations rather than
individuals, and (2) access and use of such resources reside with
actors.”

(Lin, 2001)
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Information

I Search is a classic example according to Lin’s (2001)
definition.

I Search has nothing to do with values and social norms
beyond the willingness to pass on a piece of information.
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Intergenerational Transfers
Loury (1981)

· · ·

· · ·

· · ·

...
...

...

...
...

...

Only Intergenerational Transfers

· · ·

· · ·

· · ·

...
...

...

...
...

...

Intergenerational Transfers with Re-
distribution
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Intergenerational Transfers Model

x output

α ability, realized in adults.

e investment

c consumption

y income

h(α, e) production function

U(c,V) parent’s utility

c + e = y parental budget constraint
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Intergenerational Transfers Model

Assumptions:

A.1. U is strictly monotone, strictly concave, C2, Inada condition at
the origin. γ < Uv < 1 − γ for some 0 < γ < 1.

A.2 h is strictly increasing, strictly concave in e, C1, h(0, 0) = 0
and h(0, e) < e. hα ≥ β > 0. For some ê > 0, he ≤ ρ < 1 for all
e > ê and α.

A.3. 0 ≤ α ≤ 1, distributed i.i.d. µ. µ has a continuous and strictly
positive density on [0, 1].

Parent’s utility of income y is described by a Bellman equation:

V∗(y) = max
0≤c≤y

E
{
U

(
c,V∗

(
h(α̃, y − c)

))}
.
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Intergenerational Transfers Results

I The Bellman equation has a unique solution, and there is a ȳ
such that y ≤ ȳ for all α.

The solution defines a Markov process of income.

y e,α

y

h

ν

· · ·

I If education is a normal good, then the Markov process is
ergodic, and the invariant distribution µ has support on [0, ŷ],
where ŷ solves h

(
1, e∗(y)

)
= y.

87 / 152



Intergenerational Transfers Redistribution

An education-specific tax policy taxes each individual as a function
of their education and their income. It is redistributive if the
aggregate tax collection is 0 for every education level e.

Tax policy τ1 is more egalitarian than tax policy τ2 iff the
distribution of income under τ2 is riskier than that of τ1 conditional
on the education level e.
I If τ1 and τ2 are redistributive educational tax policies, and τ1

is more egalitarian than τ2, then for all income levels y,
V∗τ1

(y) > V∗τ2
(y).

I A result about universal public education.
I A result on the relationhip between ability and earnings.
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Trust

Three Stories about Trust:

Reciprocity: Reputation games, folk
theorems, . . .

Social Learning: Generalized trust.

Behavioral Theories: Evolutionary Psychology, prosocial
preferences, . . .
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Inequality and Trust

I Evidence for a correlation between trust and income
inequality

I Rothstein and Uslaner (2005), Uslaner and Brown (2005).

I Trust is correlated with optimism about one’s own life chances
I Uslaner (2002)
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Networks, Trust, and Development

I Informal social organization substitutes for markets and formal
social institutions in underdeveloped economies.

I In the US, periods of high growth have also been periods of
decline in social capital (Putnam, 2000)

I Possibly: Social capital is needed for economic development
only up to some intermediate stage, where generalized trust
in institutions takes the place of informal trust arrangements.
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Does Social Capital Have an Economic Payoff?

Knaak and Keefer (1997). “Does social capital have a payoff".

gi = Xiγ+ Ziπ+ CIVICiα+ TRUSTiβ+ εi

gi real per-capita growth rate.

Xi control variables — Solow.

Zi control variables — “endogenous” growth models.

CIVICi index of the level of civic cooperation.

TRUSTi the percentage of survey respondents (after omitting
those responding ‘don’t know’) who, when queried
about the trustworthiness of others, replied that ‘most
people can be trusted’.
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A Model of Trust
I A population of N completely anonymous individuals.
I Individuals have no distinguishing features, and so no one can

be identified by any other.
I Individuals are randomly paired at each discrete date t , with

the opportunity to pursue a joint venture. Simultaneously with
her partner, each individual has to choose whether to
participate (P) in the joint venture, or to pursue an
independent venture (I). The entirety of her wealth must be
invested in one or the other option. The individual with wealth
w receives a gross return wπ from her choice, where π is
realized from the following payoff matrix:

investor

partner
P I

P R̃ r̃
I ẽ ẽ

Gross Returns
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A Model of Trust

I ER̃ > Eẽ > Er̃ .

I Individuals reinvest a constant fraction β of their wealth.

I Strategies for i are functions which map the history of is
experience in the game to actions in the current period.

I Equilibria: Always play P, always play I are two equilibria.
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Learning
Each individual i has a prior belief ρ, about the probability of one’s
opponent choosing P. The prior distribution is beta with
parameters a i, b i > 0. In more detail,

ρi(x) = β(a i
0, b

i
0)

=
Γ(a i

0 + b i
0)

Γ(a i
0)Γ(b

i
0)

xa i
0−1(1 − x)b i

0−1.

Let ρi
t denote individual i’s posterior beliefs after t rounds of

matching. The posterior densities ρi
t and ρj

t will be conditioned on
different data, since all information is private. The updating rule for
the β distribution has

ρi
t (ht ) ≡ β(a i

t , b
i
t ) = β(a i

0 + n, b i
0 + t − n)

for histories containing n P ’s and therefore t − n I’s. The posterior
mean of the β distribution is a i

t /(a
i
t + b i

t ).
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Optimal Play

q∗ = (e − r)/(R − r)

I Let mi
t denote i’s mean of ρt .

I An optimal strategy for individual i is: Choose P if mt > q∗ and
choose I otherwise.

Theorem 3: For all initial beliefs (ρ1
0, . . . , ρ

N
0 ), almost surely either

limt nP
t = 0 or limtnP

t = N. The probabilities of both are positive.
The limit wealth distributions in both cases is
Pr {limt wt > w} ∼ cwk , where k is kP or kI, and kP < kI.
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Social Learning
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Averaging the Opinions of Others

I DeGroot (1974)

I X is some event. pi(t) is the probability that i assigns to the
occurance of X at time t .

I A is a stochastic matrix. aij is the weight i gives to j’s opinion.

I p(t) = Ap(t − 1) = · · · = A tp(0).
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Averaging the Opinions of Others
Example

A =

1/3 1/3 1/3
1/2 1/2 0

0 1/2 1/2

 ,
p(2) = A2p(0) =

5/18 8/18 5/18
5/12 5/12 2/12
1/4 1/2 1/4

 p(0),

p(t) = A tp(0)→

3/9 4/9 2/9
3/9 4/9 2/9
3/9 4/9 2/9

 p(0).

For all i,

pi(∞) =
3
9

p1(0) +
4
9

p2(0) +
2
9

p3(0).
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Averaging the Opinions of Others
Distinct Limits

A =


1/2 1/2 0 0
1/3 2/3 0 0

0 0 1/2 1/2
0 0 2/3 1/3



A t →


2/5 3/5 0 0
2/5 3/5 0 0

0 0 3/5 2/5
0 0 3/5 2/5



pi(t)→
2
5

p1(0) +
3
5

p2(0) for i = 1, 2.

pi(t)→
3
5

p3(0) +
2
5

p4(0) for i = 3, 4.
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Averaging the Opinions of Others
No Limit

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


A t = A (t−1) mod 3+1
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Averaging the Opinions of Others
Convergence

Theorem: If A is irreducible and aperiodic, then beliefs converge to
a limit probability. For all j, limt→∞ pj(t) =

∑
i ce

i pi(0), where ce is
the unit-normalized eigenvalue centrality of A .
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Speed of Convergence
How long does it take for an individual’s belief to get near to the
limit belief?

∣∣∣pi(t) − pi(∞)
∣∣∣ =

∣∣∣∣∣∣∣∣
∑

j

A t
ij −

∑
j

ce
j

 pj(0)

∣∣∣∣∣∣∣∣
For each j 0 < pj(0) < 1,

sup
p(0)

∣∣∣∣∣∣∣∣
∑

j

A t
ij −

∑
j

ce
j

 pj(0)

∣∣∣∣∣∣∣∣ =
max


∑

j:A t
ij≥ce

j

A t
ij −

∑
j

ce
j

 ,− ∑
j:A t

ij≤ce
j

A t
ij −

∑
j

ce
j




=
∣∣∣∣∣∣∣∣A t

ij − ce
∣∣∣∣∣∣∣∣

TV
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Speed of Convergence

For x and y in the non-negative unit simplex,

||x − y ||TV = sup
A
|
∑
i∈A

(xi − yi)|.

We want to max this over individuals, so

d(t) = supi

∣∣∣∣∣∣∣∣A t
ij − ce

∣∣∣∣∣∣∣∣
TV

.

Define

t(ε) = min{t : d(t) < ε}

t∗ = t(1/4).
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A Lower Bound for t∗

Q(i, j) = ce
i Aij, Q(A ,B) =

∑
i∈A j∈B

Q(i, j).

Q(A ,B) is the amount of influence B inherits from A .

Φ(S) =
Q(S,Sc)∑

i∈S ce
i

, Φ∗ = inf
S :

∑
i∈S ce

i ≤1/2
Φ(S).

Φ(S) is the share of S ’s influence that is inherited by Sc .

Theorem: t∗ ≥
1

4Φ∗
.
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Limit Beliefs and the “Wisdom of Crowds”

I Suppose that pi(0) = p + εi . The εi are all independent, have
mean 0, and variances are bounded.

I What is the relationship between pi(∞) and p?
I A sequence of networks (Vn,En)∞n=1, |Vn | = n, with centrality

vectors sn, and belief sequences pn(t).

Definition: The sequence learns if for all ε > 0,
Pr

{
| limn→∞ limt→∞ pn(t) − p| > ε

}
= 0.

Theorem: If there is a B > 0 such that for all i, each individual’s
normailzed centrality is less than B/n, then the sequence learns.
I What conditions on the networks guarantee this?
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Bayesian Learning on Networks
Multi-armed bandit problem

I An undirected network G.
I Two actions, A and B. A pays off 1 for sure. B pays off 2 with

probability p and 0 with probability 1 − p.
I At times t = {1, 2, . . .}, each individual makes a choice, to

maximize E
{∑∞

τ=t β
τπiτ|ht

}
, the expected present value of the

discounted payoff stream given the information.
I p ∈ {p1, . . . , pK }. W.l.o.g. pj , pk and pk , 1/2.
I Each individual has a full-support prior belief µi on the pk .
I Individuals see the choices of his neighbors, and the payoffs.
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Bayesian Learning on Networks
Multi-armed bandit problem

I If the network contains only one member, this is the classic
multi-armed bandit problem.

I How does the network change the classic results?
I What does one learn from the behavior of others?

Theorem: With probability one, there exists a time such that all
individuals in a component play the same action from that time on.

I In one-individual problem, it is possible to lock into A when B
is optimal. How does the likelihood of this change in a
network?
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Bayesian Learning on Networks
Common Knowledge

(Ω,F , p) A probability space.

X A finite set of actions.

Yi A finite set of signals observed by i. yi : Ω → Yk is
F -measurable.

σ(f) If f is a measurable mapping of Ω into any measure
space, σf is the σ-algebra generated by f . Define
σ(yk ) = Yk .

Definition: A decision function maps states Ω to actions X . A
decision rule maps σ-fields on Ω to decision rules, that is,
d(G) : Ω → X . For any σ-field G, d(G) is G-measurable. That is,
σd(G) ⊂ G.
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Bayesian Learning on Networks
Common Knowledge

I Updating of beliefs:

Fk (t + 1) = Fk (t) ∨
∨
j,k

σd (Fj(t)) ,

Fk (0) = Yk .

Key Property: If σd(G) ⊂ H ⊂ G, then d(G) = d(H).
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Bayesian Learning on Networks
Common Knowledge

Theorem: Suppose d has the key property. Then there are
σ-algebras Fk ⊂

∨
k Yk and T ≥ 0 such that Fk (t) = Fk for all

t ≥ T , and for all k and j,

d(Fk ) = d(Fj) = d

∧
i

Fi

 .
If the decision functions for all individuals are common knowledge,
then they agree.

111 / 152



Bayesian Learning on Networks
Common Knowledge

Now given is a connected undirected network (V ,E).
I Individuals i and k communicate directly if there is an edge

connecting them.
I Individuals i and k communicate indirectly if there is a path

connecting them.

Key Network Property: For any sequence of individuals
k = 1, 2, . . . , n, if σd(Fk ) ⊂ Fk+1 and σd(Fn) ⊂ F1, then
d(Fk ) = d(F1) for all k .
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Bayesian Learning on Networks

Updating of beliefs:

Fk (t + 1) = Fk (t) ∨
∨
j∼k

σd (Fj(t)) ,

Fk (0) = Yk .

Theorem: Suppose d has the key network property. Then there
are σ-algebras Fk ⊂

∨
k Yk and T ≥ 0 such that Fk (t) = Fk for all

t ≥ T , and for all k and j,

d(Fk ) = d(Fj) = d

∧
i

Fi

 .

113 / 152



Diffusion
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Network Effects and Diffusion
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Varieties of Action

I Graphical Games — Diffusion of action
I Blume (1993, 1995) — Lattices
I Morris (2000) — General graphs
I Young and Kreindler (2011) — Learning is fast

I Social Learning — Diffusion of knowledge
I Banerjee, QJE (1992)
I Bikchandani, Hershleifer and Welch (1992)
I Rumors
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Coordination Games

A B
A a,a 0,0
B 0,0 b,b

Pure coordination game

a, b > 0

Three equilibria:〈
a, a

〉
,

〈
b, b

〉
, and

〈( b
a + b

,
a

a + b

)
,
( b
a + b

,
a

a + b

)〉

117 / 152



Coordination Games

A B
A a,a 0,0
B 0,0 b,b

Pure coordination game

a, b > 0

Best response dynamics

% B
0 1a/(a+b)
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Coordination Games

A B
A a,a d,c
B c,d b,b

General coordination game

a > c, b > d

Here the symmetric mixed equilibrium is at
p∗ = (b − d)/(a − c + b − d).

Suppose b − d > a − c. Then p∗ > 1/2. At (1/2, 1/2), A is the
best response. This is not inconsistent with b > a.

I A is Pareto dominant if a > b.
I B is risk dominant if b − d < a − c.
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Coordination Games — Stochastic Stability

Continuous time stochastic process
I Each player has an alarm clock. When it goes off, she makes

a new strategy choice. The interval between rings has an
exponential distribution.

I Strategy revision:
I Each individual best-responds with prob. 1 − ε, Kandori,

Mailath and Robb (1993); Young (1993)
or

I The log-odds of choosing A over B is proportional to the payoff
difference — logit choice, Blume (1993, 1995).
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The Stochastic Process

This is a Markov process on the state space [0, . . . ,N], where the
state is the number of players choosing B.

Logit Choice Mistakes

In both cases, as Prob{best response ↑ 1}, Prob{N} ↑ 1.
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Coordination on Networks

I Is the answer the same on every graph?

.
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Coordination on Networks

I Is the answer the same on every graph?

Mistake: 0 : 0.5 N : 0.5. Logit: N : 1.
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General Analysis

I In general, the strategy revision process is an ergodic Markov
process.

I There is no general characterization of the invariant
distribution.

I The answer is well-understood for potential games and logit
updating.
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A General Diffusion Model

I Best response strategy revision. If fraction q or more of your
neighbors choose A , then you choose A .

I Two obvious equilibria: All A and All B.

I How easy is it to “tip” from one to the other? What about
intermediate equilibria?
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A General Diffusion Model

I Imagine that everyone initially uses B.

I Now a small group adopts A .

I When does it spread, when does it stop?

I The answer should depend on the network structure, who are
the initial adopters, and the threshold p∗.
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Diffusion of Coordination — Line

When the Poisson alarm clock rings, the player best responds to
his neighbors. p∗ < 1/2. Questions:
I Are islands of risk dominance stable?
I Can risk dominance spread?
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Diffusion of Coordination — Lattices

When the Poisson alarm clock rings, the player best responds to
his neighbors. p∗ < 1/4. Questions:
I Are islands of risk dominance stable?
I Can risk dominance spread?
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Diffusion of coordination — General Graphs

I A cluster of density p is a set of vertices C such that for each
v ∈ C, at least fraction p of v ’s neighbors are in C.

The set C = {A ,B,C} is a cluster of density 2/3.

A

B C
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General Graphs

Two observations:

I Every graph will have a cascade threshold.

I If the initial adoptees are a cluster of density at least p∗, then
diffusion can only move forward.
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General Graphs: Clusters Stop Cascades

Consider a set S of initial adopters in a network with vertices T ,
and suppose that remaining nodes have threshold q.

Claim: If Sc contains a cluster with density greater than
1 − q, then S will not cause a complete cascade.

Proof: If there is a set T ⊂ Sc with density greater than
1 − q, then even if S/T chooses A , every member of
T has fraction more than 1 − q choosing B, and
therefore less than fraction q are choosing A .
Therefore no member of T will switch.
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General Graphs: Clusters Stop Cascades

Claim: If a set S ⊂ V of initial adopters of an innovation with
threshold q fails to start a cascade, then there is a
cluster C ∈ V/S of density greater than 1 − q.

Proof: Suppose the innovation spreads from S to T and
then gets stuck. No vertex in Tc wants to switch, so
less than a fraction q of its neighbors are in T , more
than fraction 1 − q are out. That is Tc has density
greater than 1 − q.
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Networks and Optimality
I Networks make it easier for cascades to take place.

I In the fully connected graph, a cascade from a small group
never takes place. With stochastic adjustment in the mistakes
model, the probability of transiting from all A to all B is O(εqN),
where q is the indifference threshold. On a network, the
probability of transiting from all A to all B is on the order of εK ,
where K is the size of a group needed to start a cascade, and
this is independent of N.

I This is not always optimal!

I Risk dominance and Pareto dominance can be different. This
can be understood as a robustness question. If the population
has correlated on the efficient action, how easy is it to undo?
Hard if the efficient action is risk dominant. If the efficient
action is not risk-dominant, it is easier to undo on sparse
networks than on nearly completely connected networks.
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Community Structure

Under Construction
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Two Problems

Imagine a social network, such as a friendship network in a school
or network of information sharing in a village. Suppose the network
participants represent several ethnic groups, races or tribes.

I How “integrated” is the network with respect to predefined
communities?

I What are the implicit “comunities” of highly mutually
interactive neighbors?

I How do these community structures map onto each other?
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Measuring Segregation

Attributes of physical segregation.

I Evenness — Differential
distribution of two groups across
the network.

I Exposure — The degree to which
different groups are in contact.

I Concentration — Relative
concentration of physical space
occupied by different groups.
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Measuring Segregation

Attributes of physical segregation.

I Centraliztion — Extent to which a
group is near the center.

I Clustering — Degree to which
group members are connected to
others in the group.
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Dissimilarity Index

A city is divided into N areas. Area i has
minority population mi and majority
population Mi . Total populations are m and
M, respectively.

dissimilarity index =
1
2

N∑
i=1

∣∣∣∣∣∣mi

m
−

Mi

M

∣∣∣∣∣∣.
frac. M

frac. m
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