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Social Life and Economics

I “The outstanding discovery of recent historical and
anthropological research is that man’s economy, as a rule, is
submerged in his social relationships. He does not act so as
to safeguard his individual interest in the possession of
material goods; he acts so as to safeguard his social standing,
his social claims, his social assets. He values material goods
only in so far as they serve this end.” (Polanyi, 1944)

I “Economics is all about how people make choices. Sociology
is all about why they don’t have any choices to make.”
(Duesenberry, 1960)
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Where do Social Interactions Appear?

Phenomena

I Labor markets
I Career Choices
I Retirement

I Fertility

I Health

I Education Outcomes

I Violence

Mechanisms

I Peer effects
I Stigma

I Role models

I Social Norms

I Social Learning

I Social Capital?
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Research Methodologies
Ethnographies

Classics
I William F. Whyte, Street Corner Society: The Social Stucture

of an Italian Slum, 1943.
I Berelson, Lazarsfeld, and McPhee, Voting: A Study of Opinion

Formation in a Presidential Campaign, 1954.
I Oscar Lewis, Five Families; Mexican Case Studies in the

Culture of Poverty, 1959.
I Elliot Liebow, Talley’s Corner: A study of Negro Streetcorner

Men, 1967.
Modern Ethnographies
I Katherine S. Newman, No Shame in My Game: The Working

Poor in the Inner City, 1999.
I Chutes and Ladders: Navigating the Low-Wage

Labor Market, 2006.
I Kate Meagher, Identity Economics: Social Networks and the

Informal Economy in Africa, 2010.
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Research Methodologies
Field Experiments

I Robbers’ Cave, M. Sherif et al. 1954.

I Conformity, S. Asch et al. 1951.

I 6 Degrees of Separation, S. Milgram, 1967.
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Large-Scale “Natural” Experiments

I Gautreaux Assisted Housing Program

I Moving to Opportunity
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Questions

I What are appropriate tools for modelling social interactions?

I Describe the peer effects. What goes on at the micro level?

I What are the aggregate effects of interaction on social
networks?
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Crime Micro Analysis

Mennis and Harris (2001)

Although other research has investigated deviant peer
contagion, and still other research has examined offense
specialization among delinquent youths, we have found
that deviant peer contagion influences juvenile recidi-
vism, and that contagion is likely to be associated with
repeat offending. These findings suggest that juveniles
are drawn to specific types of offending by the spatially-
bounded concentration of repeat offending among their
peers. Research on causes of delinquency within neigh-
borhoods, then, may produce more useful causal models
than studies that ignore spatial concentrations of offense
patterns.
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Crime Micro Analysis
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Crime Micro Analysis
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Aggregate Analysis

Glaeser Sacerdote and Scheinkman 1996.

The most puzzling aspect of crime is not its overall level
nor the relationships between it and either deterrence or
economic opportunity. Rather, following Quetelet [1835],
we believe that the most intriguing aspect of crime is its
astoundingly high variance across time and space.

Positive covariance across agents’ decisions about crime
is the only explanation for variance in crime rates higher
than the variance predicted by difference in local
conditions.
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A Model

I 2N + 1 individuals live on the integer lattice at points
−N, . . . ,N.

I Type 0s never commit a crime; Type 1’s always do; Type 2’s
imitate the neighbor to the left.

I Type of individual i is pi .
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Model (of sorts)

I Expected distance between fixed agents determines group
size — range of interaction effects.

I Social interactions magnify the effect of fixed agents.

E{ai} =
p1

p0 + p1
≡ p, Sn =

∑
|i|≤n

ai − p
2n + 1

.

√
2n + 1Sn → N(0,σ2), σ2 = p(1 − p)

2 − π
π

where

π = p0 + p1, f(π) =
2 − π
π

.
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Aggregate Statistics
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Empirical problems

I Unobserved correlated shocks

I Endogeneity of the network

I Distinguishing endogenous and contextual effects
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Plan

I Network Science

I Labor Markets — Weak and Strong Ties

I Peer Effects and Complementarities — Games on Networks

I Social Capital

I Social Learning

I Diffusion

I Community Structure
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Network Science
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Graphs

A directed graph G is a pair (V ,E) where V is a set of vertices, or
nodes, and E is a set of Edges. An edge is an ordered pair (v,w),
meaning that there is a connection from v to w. If (w, v) ∈ E
whenever (v,w) ∈ E, then G is an undirected graph.

The degree of a node in an undirected graph G is
#{w : (v,w) ∈ E}.

A path of G is an ordered list of nodes (v0, . . . , vN) such that
(vn−1, vn) ∈ E for all 1 ≤ n ≤ N. A geodesic is a shortest-length
path connecting v0 and vn.
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Graphs

A subset of vertices is connected if there is a path between every
two of them. A component of G is a set of vertices maximal with
respect to connectedness. A clique is a component for which all
possible edges are in E.

A graph G has a matrix representation. A adjacency matrix for a
graph (V ,E) is a #V ×#V matrix A such that avw = 1 if
(v,w) ∈ E, and 0 otherwise. A weighted adjacency matrix has
non-zero numbers corresponding to edges in E.
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Common Network Measurements

I Graph diameter — maximal geodesic length.

I Mean geodesic length.

I Degree distribution.

I Clustering coefficient — the average (over individuals) of the
number of length 2 paths containing i that are part of a
triangle. (Measures degree of transitivity.)

I Component size distribution
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Some Social Networks I
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Some Social Networks II
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Some Social Networks

n – # nodes, m – # edges, z – mean degree,
l – mean geodesic length, α – exponent of degree dist.,

C(k ) - clustering coeff.s, r degree corr. coeff.
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Comparison: Erdös-Rényi Random Graphs

Every possible (v,w) edge is assigned to E with probability p.

Poisson random graphs: A sequence of graphs Gn with |Vn | = n
such that p · (n − 1)→ z.

Large n facts:

I Phase transition at z = 1.
I Low-density: Exponential component

size distribution with a finite limit
mean.

I High-density: a giant connected
component of size O(n). Remainder
size distribution exponential . . . .

I Clustering coefficient is C2 = O(n−1). Simulation of Erdös-Rényi

random sets on 300 nodes.
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Transitivity

“If two people in a social network have a friend in common, then
there is an increased likelihood that they will become friends
themselves at some point in the future.” Rappoport (1953)

I Clustering coefficient:
Fraction of connected triples
that are triangles.

I Why transitivity?
A

B

C
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Homophily

“Similarity begets friendships.”
Plato

“All things akin and like are for
the most part pleasant to each
other, as man to man, horse to
horse, youth to youth. This is the
origin of the proverbs: The old
have charms for the old, the
young for the young, like to like,
beast knows beast, ever jackdaw
to jackdaw, and all similar
sayings.” Aristotle,
Nicomachean Ethics
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Sources of Homophily

I Status Homophily: We feel more comfortable when we
interact with others who share a similar cultural background.

I Value Homophily: We often feel justified in our opinions when
we are surrounded by others who share the same beliefs.

I Opportunity Homophily: We mostly meet people like us.
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Sources of Homophily

I Fixed attributes
I Selection

I Variable attributes
I Social influence

I Identification
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Measuring Homophily

Consider a network with N individuals: Fraction p are males,
fraction q = 1 − p are females.

I Assign nodes to gender randomly, each node male with
probability p.

I What is the probability of a “cross-gender” edge?

I A fraction of cross-gender edges less than 2pq is evidence for
homophily.
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Small Worlds

“Arbitrarily selected individuals (N=296) in Nebraska and Boston
are asked to generate acquaintance chains to a target person in
Massachusetts, employing “the small world method” (Milgram,
1967). Sixty-four chains reach the target person. Within this group
the mean number of intermediaries between starters and targets is
5.2. Boston starting chains reach the target person with fewer
intermediaries than those starting in Nebraska; subpopulations in
the Nebraska group do not differ among themselves. The funneling
of chains through sociometric “stars” is noted, with 48 per cent of
the chains passing through three persons before reaching the
target. Applications of the method to studies of large scale social
structure are discussed.”

Travers and Milgram (1969)
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Small Worlds Watts-Strogatz Model

Homophily

+

Weak Ties
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Is The World Small?

My Wife “ What a suprise meeting you here. The world
is indeed small.”

Friend: “No, it’s very stratified.”
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Labor Markets



Inequality in Labor Markets
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Inequality in Labor Markets
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Job Search
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The Strentgh of Weak Ties

“. . . [T]he strength of a tie is a (probably linear) combination of the
amount of time, the emotional intensity, the intimacy (mutual
confiding), and the reciprocal services which characterize the tie.
Each of these is somewhat independent of the other, though the
set is obviously highly intracorrelated. Discussion of operational
measures of and weights attaching to each of the four elements is
postponed to future empirical studies. It is sufficient for the present
purpose if most of us can agree, on a rough intuitive basis,
whether a given tie is strong, weak, or absent.”

Granovetter (1973)
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Why do Weak Ties Matter? I

Two cliques.

A–B is a bridge.

Local bridge’s endpoints
have no common friends.

Triadic closure: A length-2
path containining only
strong edges is a closed
triad.

A

B
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Ties and Inequality I
Model

I Workers live for two periods, #W identical in both periods.
I Half of the workers are high-ability, produce 1.
I Half of the workers are low-ability, produce 0.
I Workers are observationally indistinguishable.

I Each firm employs 1 worker.
I π = employee productivity −wage.
I Free entry, risk-neutral entrepreneurs.

I Equilibrium condition: Firms expected profit is 0. Wage offers
are expected productivity.
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Ties and Inequality II
Social Structure

I Each t = 1 worker knows at most 1 t = 2 worker.
I Each t = 1 worker has a social tie with pr = τ.
I Conditional on having a tie, it is to the same type with

probability α > 1/2.
I Assignments of a t = 1 worker to a specific t = 2 worker is

random.

I τ — “network density”
I α — “inbreeding bias”
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Ties and Inequality III
Timing

I Firms hire period 1 workers
through the anonymous
market, clears at wage wm1.

I Production occures. Each
firm learns its worker’s
productivity.

I Firm f sets a referral offer,
wrf , for a second period
worker.

I Social ties are assigned.

I t = 1 workers with ties relay
wri .

I t = 2 workers decide either
to accept an offer or enter
the market.

I Period 2 market clears at
wage wm2.

I Production occurs
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Ties and Inequality IV
Equilibrium

I Only firms with 1-workers will make referral offers.

I Referral wages offers are distributed on an interval [wm2,wR ].

I 0 < wm2 < 1/2.

I π2 > 0.

I wm1 = E
{

production value + referral value
}
> 1/2.
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Ties and Inequality V
Comparative Statics

α, τ ↑ =⇒



wm2 ↓

wR ↑

π2 ↑

wm1 ↑
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Ties and Inequality VI
Comparing Models

I in the market-only model, wm1 = wm2 = 1/2.

I t = 2 1-types are better off, t = 2 low types are worse off.
Social structure magnifies income inequality in the second
period.

I The total wage bill in the second period is less with social
structure.
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Network Structure and Inequality

I Dynamic Markov model

I Illustrate how network structure matters
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Network Structure and Inequality Model

I Discrete time.

I N individuals.

I Symmetric adjacency matrix A .

I A configuration of the model is a map s : {1, . . . ,N} → {0, 1}.
Interpretation: 0 is unemployed, 1 is employed.

I p is the probability that an individual learns about a job
opening.

47 / 131



Network Structure and Inequality Dynamics

1. With probability p + q ≤ 1, a job event happens. With
probability qk/N one of the k employed individuals loses her
job. With probability p a single randomly chosen individual
learns about a job.

2. If she is unemployed, she takes the job.

3. If she is employed, she passes the offer on to an unemployed
neighbor, chosen at random.

4. If all neighbors are employed, the referral dies.
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Network Structure and Inequality Transitions

In any period, the configuration can change in one of three ways:

I A 0 can change to a 1;
I A 1 can change to a 0;
I The configuration can remain unchanged.

Pr
{
st+1(i) = 1

∣∣∣ st (i) = 0, st (−i)
}
=

p
N

1 +
∑

j

aijst (j)
1∑

k ajk st (k )


Pr

{
st+1(i) = 0

∣∣∣ st (i) = 1, st (−i)
}
=

q
N
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Network Structure and Inequality Short Run

Cov
(
st+1(1), st+1(3)

∣∣∣ st = (0, 1, 0)
)
=

E
{
st+1(1) · st+1(3)

∣∣∣(0, 1, 0)t

}
− E

{
st+1(1)

∣∣∣(0, 1, 0)} · E{
st+1(3)

∣∣∣(0, 1, 0)t

}
=( q

N
+

p
N

+
p
N

+ z
)
· 0

−

( q
N
· 0 +

p
N
· 1 +

p
N
· 0 + z · 0

)2
= −

p2

N2
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Network Structure and Inequality Equilibrium

I Equilibrium is an invariant distribution of the Markov chain.

I The transition matrix is irreducible, so the invariant distribution
µ is unique!

I Covµ
(
s(i), s(j)

)
≥ 0.

I Covµ
(
s(i), s(j)

)
> 0 if and only if i and j are in the same

connected component.
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Network Structure and Inequality Dyad

Because of symmetry, this is a Markov process on the number of
employed. mij is the probability that j workers will be employed
tomorrow if i workers are employed today.

M =


1 − p p 0

q
2 1 − p − q

2 p

0 q 1 − q


The invariant distribution is a probability distribution that solves

ρM = ρ.

ρ(0) =
q2

∆
ρ(1) =

2pq
∆

ρ(2) =
2p2

∆
.
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Network Structure and Inequality No Link

M =


1 − p p 0

q
2 1 − q

2 −
p
2

p
2

0 q 1 − q



ρ(0) =
q2

∆
ρ(1) =

2pq
∆

ρ(2) =
p2

∆
.
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Network Structure and Inequality Clique

Suppose that emp = k out of N individuals are employed after t
events.

Pr {empt+1 = k + 1|empt = k } = p,

Pr {empt+1 = k − 1|empt = k } =
kq
N
.

ρ(k + 1)
ρ(k )

=
N
k

p
q

ρ(k )
ρ(0)

=
Nk

k !

(
p
q

)k
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Network Structure and Inequality Pair of Cliques

Product distribution
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Network Structure and Inequality? Linked Cliques

??
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Peer Effects
and Complementarities

Behaviors on Networks
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Three Types of Network Effects

I Information and social learning.

I Network externalities.

I Social norms.
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A Common Regression

ωi = π0 + xiπ1 + x̄gπ2 + ygπ3 + εi

Where
I ωi is a choice variable for an individual,
I xi is a vector of individual correlates,
I x̄g is a vector of group averages of individual correlates,
I yg is a vector of other group effects, and
I εi is an unobserved individual effect.
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LIM Model The Reflection Problem

For all g ∈ G and all i ∈ g,

ωi = α+ βxi + δxg + γµi + εi (Behavior)

xg =
1

Ng
xi (Behavior)

µi =
1

Ng

∑
j∈g

E
{
ωj

}
(Equilibrium)

The reduced form is

ωi =
α

1 − γ
+ βxi +

γβ+ δ

1 − γ
xg + εi
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General Linear Network Model

ωi = β′xi + δ′
∑

j

cijxj + γ′
∑

j

aij E
{
ωj |x

}
+ ηi

This is the general linear model

Γω+ ∆x = η.

Question:
I How do we interpret the parameters?
I What kind of restrictions on the coefficients are reasonable,

and do they lead to identification.

These questions require a theoretical foundation.
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Incomplete-Information Game

I I individuals; each i described by a type vector (xi, zi) ∈ R2.
xi is publicly observable, zi is private.

I There is a Harsanyi prior ρ on the space of types R2I.
I Actions are ωi ∈ R.
I Payoff functions:

Ui(ωi,ω−i; x, zi) = θiωi −
1
2
ω2

i −
φ

2

ωi −
∑

j

aij ωj


2

I aij — peer effect of j on i.
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Private Component

To complete the model, specify how individual characteristics
matter.

θi = γxi + δ
∑

j

cijxj + z

Direct Effect Contextual Effect

cij — contextual/direct effect of j on i.

63 / 131



Equilibrium

(1 + φ)

(
I −

φ

1 + φ
A
)
ω − (γI + δC)x = η

Γω+ ∆x = η.

Constraints imposed by the theory:

aii = cii = 0,
∑

j

aij =
∑

j

cij = 1.

Γii = 1 + φ,
∑
j,i

Γij = −φ, ∆ii = −(γ+ δ),
∑
j,i

∆ij = δ.

Even more constraints if you insist on A = C.
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Classical Econometrics Rank and Order Conditions

When is the first equation identified?
I Order condition: #{j /C 1}+#{j /A 1} ≥ N − 1.
I For each (γ, δ) pair there is a generic set of C-matrices such

that the rank condition is satisfied.
I If two individuals’ exclusions satisfy the order condition, there

is a generic set of C-matrices such that the rank condition is
satisfied for all γ and δ.

Notice that asking for identification of all of equation 1 is too much.

Add Health Asked the Wrong Question!
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Non-Linear Aggregators

Bad apple The worst student does enormous harm.

Shining light A single student with sterling outcomes can inspire
all others to raise their achievement.

Invidious comparison Outcomes are harmed by the presence of
better achieving peers.

Boutique A student will have higher achievement whenever she
is surrounded by peer with similar characteristics.
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Social Capital
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Networks and Social Capital

“the aggregate of the actual or potential resources which are linked to possession
of a durable network of more or less institutionalized relationships of mutual
acquaintance or recognition.” (Bourdieux and Wacquant, 1992)

“the ability of actors to secure benefits by virtue of membership in social networks
or other social structures.” (Portes, 1998)

“features of social organization such as networks, norms, and social trust that
facilitate coordination and cooperation for mutual benefit.” (Putnam, 1995)

“Social capital is a capability that arises from the prevalence of trust in a society
or in certain parts of it. It can be embodied in the smallest and most basic social
group, the family, as well as the largest of all groups, the nation, and in all the
other groups in between. Social capital differs from other forms of human capital
insofar as it is usually created and transmitted through cultural mechanisms like
religion, tradition, or historical habit.” (Fukuyama, 1996)

“naturally occurring social relationships among persons which promote or assist
the acquisition of skills and traits valued in the marketplace. . . ” (Loury, 1992)
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Networks and Social Capital

“. . . social capital may be defined operationally as resources
embedded in social networks and accessed and used by actors for
actions. Thus, the concept has two important components: (1) it
represents resources embedded in social relations rather than
individuals, and (2) access and use of such resources reside with
actors.”

(Lin, 2001)
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Information

I Search is a classic example according to Lin’s (2001)
definition.

I Search has nothing to do with values and social norms
beyond the willingness to pass on a piece of information.
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Trust

Three Stories about Trust:

Reciprocity: Reputation games, folk
theorems, . . .

Social Learning: Generalized trust.

Behavioral Theories: Evolutionary Psychology, prosocial
preferences, . . .
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Inequality and Trust

I Evidence for a correlation between trust and income
inequality

I Rothstein and Uslaner (2005), Uslaner and Brown (2005).

I Trust is correlated with optimism about one’s own life chances
I Uslaner (2002)
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Networks, Trust, and Development

I Informal social organization substitutes for markets and formal
social institutions in underdeveloped economies.

I In the US, periods of high growth have also been periods of
decline in social capital (Putnam, 2000)

I Possibly: Social capital is needed for economic development
only up to some intermediate stage, where generalized trust
in institutions takes the place of informal trust arrangements.
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Does Social Capital Have an Economic Payoff?

Knaak and Keefer (1997). “Does social capital have a payoff".

gi = Xiγ+ Ziπ+ CIVICiα+ TRUSTiβ+ εi

gi real per-capita growth rate.

Xi control variables — Solow.

Zi control variables — “endogenous” growth models.

CIVICi index of the level of civic cooperation.

TRUSTi the percentage of survey respondents (after omitting
those responding ‘don’t know’) who, when queried
about the trustworthiness of others, replied that ‘most
people can be trusted’.
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A Model of Trust
I A population of N completely anonymous individuals.
I Individuals have no distinguishing features, and so no one can

be identified by any other.
I Individuals are randomly paired at each discrete date t , with

the opportunity to pursue a joint venture. Simultaneously with
her partner, each individual has to choose whether to
participate (P) in the joint venture, or to pursue an
independent venture (I). The entirety of her wealth must be
invested in one or the other option. The individual with wealth
w receives a gross return wπ from her choice, where π is
realized from the following payoff matrix:

investor

partner
P I

P R̃ r̃
I ẽ ẽ

Gross Returns
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A Model of Trust

I ER̃ > Eẽ > Er̃ .

I Individuals reinvest a constant fraction β of their wealth.

I Strategies for i are functions which map the history of is
experience in the game to actions in the current period.

I Equilibria: Always play P, always play I are two equilibria.
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Learning
Each individual i has a prior belief ρ, about the probability of one’s
opponent choosing P. The prior distribution is beta with
parameters a i, b i > 0. In more detail,

ρi(x) = β(a i
0, b

i
0)

=
Γ(a i

0 + b i
0)

Γ(a i
0)Γ(b

i
0)

xa i
0−1(1 − x)b i

0−1.

Let ρi
t denote individual i’s posterior beliefs after t rounds of

matching. The posterior densities ρi
t and ρj

t will be conditioned on
different data, since all information is private. The updating rule for
the β distribution has

ρi
t (ht ) ≡ β(a i

t , b
i
t ) = β(a i

0 + n, b i
0 + t − n)

for histories containing n P ’s and therefore t − n I’s. The posterior
mean of the β distribution is a i

t /(a
i
t + b i

t ).
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Optimal Play

q∗ = (e − r)/(R − r)

I Let mi
t denote i’s mean of ρt .

I An optimal strategy for individual i is: Choose P if mt > q∗ and
choose I otherwise.

Theorem 3: For all initial beliefs (ρ1
0, . . . , ρ

N
0 ), almost surely either

limt nP
t = 0 or limtnP

t = N. The probabilities of both are positive.
The limit wealth distributions in both cases is
Pr {limt wt > w} ∼ cwk , where k is kP or kI, and kP < kI.
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Social Learning
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Averaging the Opinions of Others

I DeGroot (1974)

I X is some event. pi(t) is the probability that i assigns to the
occurance of X at time t .

I M is a stochastic matrix. mij is the weight i gives to j’s opinion.

I p(t) = Mp(t − 1) = · · · = Mtp(0).
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Averaging the Opinions of Others
Example

M =

1/3 1/3 1/3
1/2 1/2 0

0 1/2 1/2

 ,
p(2) = M2p(0) =

5/18 8/18 5/18
5/12 5/12 2/12
1/4 1/2 1/4

 p(0),

p(t) = Mtp(0)→

3/9 4/9 2/9
3/9 4/9 2/9
3/9 4/9 2/9

 p(0).

pi(∞) = (1/9)
(
3p1(0) + 4p2(0) + 2p3(0)

)
.
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Averaging the Opinions of Others
Distinct Limits

M =


1/2 1/2 0 0
1/3 2/3 0 0

0 0 1/2 1/2
0 0 2/3 1/3



Mt →


2/5 3/5 0 0
2/5 3/5 0 0

0 0 3/5 2/5
0 0 3/5 2/5


pi(t)→ (1/5)

(
2p1(0) + 3p2(0)

)
for i = 1, 2.

pi(t)→ (1/5)
(
3p3(0) + 2p4(0)

)
for i = 3, 4.
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Averaging the Opinions of Others
No Limit

M =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


Mt = M(t−1)mod 3+1
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Averaging the Opinions of Others
Convergence

Theorem: If M is irreducible and aperiodic, then beliefs converge to
a limit probability. limt→∞ p(t) =

∑
i πipi(0), where π is the left

Perron eigenvector of M.

Connection to Markov processes.
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Averaging the Opinions of Others
Social influence

Influential individuals are those who influence other influential
individuals. We want to measure this by a scalar si for each
individual i.

Definition: The Bonacich (eigenvector) centrality of individual j is
the average of the social influences of those he inflluences,
weighted by the amount he influences them (Bonacich, 1987).

Then s solves
sj =

∑
i

mijsi,

Thus s is the left Perron eigenvector of M, and so s = π.
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Limit Beliefs and the “Wisdom of Crowds”

I Suppose that pi(0) = p + εi . The εi are all independent, have
mean 0, and variances are bounded.

I What is the relationship between pi(∞) and p?
I A sequence of networks (Vn,En)∞n=1, |Vn | = n, with centrality

vectors sn, and belief sequences pn(t).

Definition: The sequence learns if for all ε > 0,
Pr

{
| limn→∞ limt→∞ pn(t) − p| > ε

}
= 0.

Theorem: If there is a B > 0 such that for all i, s i
n ≤ B/n, then the

sequence learns.
I What conditions on the networks guarantee this?
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Bayesian Learning on Networks
Multi-armed bandit problem

I An undirected network G.
I Two actions, A and B. A pays off 1 for sure. B pays off 2 with

probability p and 0 with probability 1 − p.
I At times t = {1, 2, . . .}, each individual makes a choice, to

maximize E
{∑∞

τ=t β
τπiτ|ht

}
, the expected present value of the

discounted payoff stream given the information.
I p ∈ {p1, . . . , pK }. W.l.o.g. pj , pk and pk , 1/2.
I Each individual has a full-support prior belief µi on the pk .
I Individuals see the choices of his neighbors, and the payoffs.
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Bayesian Learning on Networks
Multi-armed bandit problem

I If the network contains only one member, this is the classic
multi-armed bandit problem.

I How does the network change the classic results?
I What does one learn from the behavior of others?

Theorem: With probability one, there exists a time such that all
individuals in a component play the same action from that time on.

I In one-individual problem, it is possible to lock into A when B
is optimal. How does the likelihood of this change in a
network?
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Bayesian Learning on Networks
Common Knowledge

(Ω,F , p) A probability space.

X A finite set of actions.

Yi A finite set of signals observed by i. yi : Ω → Yk is
F -measurable.

σ(f) If f is a measurable mapping of Ω into any measure
space, σf is the σ-algebra generated by f . Define
σ(yk ) = Yk .

Definition: A decision function maps states Ω to actions X . A
decision rule maps σ-fields on Ω to decision rules, that is,
d(G) : Ω → X . For any σ-field G, d(G) is G-measurable. That is,
σd(G) ⊂ G.
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Bayesian Learning on Networks
Common Knowledge

I Updating of beliefs:

Fk (t + 1) = Fk (t) ∨
∨
j,k

σd (Fj(t)) ,

Fk (0) = Yk .

Key Property: If σd(G) ⊂ H ⊂ G, then d(G) = d(H).
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Bayesian Learning on Networks
Common Knowledge

Theorem: Suppose d has the key property. Then there are
σ-algebras Fk ⊂

∨
k Yk and T ≥ 0 such that Fk (t) = Fk for all

t ≥ T , and for all k and j,

d(Fk ) = d(Fj) = d

∧
i

Fi

 .
If the decision functions for all individuals are common knowledge,
then they agree.
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Bayesian Learning on Networks
Common Knowledge

Now given is a connected undirected network (V ,E).
I Individuals i and k communicate directly if there is an edge

connecting them.
I Individuals i and k communicate indirectly if there is a path

connecting them.

Key Network Property: For any sequence of individuals
k = 1, 2, . . . , n, if σd(Fk ) ⊂ Fk+1 and σd(Fn) ⊂ F1, then
d(Fk ) = d(F1) for all k .
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Bayesian Learning on Networks

Updating of beliefs:

Fk (t + 1) = Fk (t) ∨
∨
j∼k

σd (Fj(t)) ,

Fk (0) = Yk .

Theorem: Suppose d has the key network property. Then there
are σ-algebras Fk ⊂

∨
k Yk and T ≥ 0 such that Fk (t) = Fk for all

t ≥ T , and for all k and j,

d(Fk ) = d(Fj) = d

∧
i

Fi

 .
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Diffusion
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Network Effects and Diffusion
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Varieties of Action

I Graphical Games — Diffusion of action
I Blume (1993, 1995) — Lattices
I Morris (2000) — General graphs
I Young and Kreindler (2011) — Learning is fast

I Social Learning — Diffusion of knowledge
I Banerjee, QJE (1992)
I Bikchandani, Hershleifer and Welch (1992)
I Rumors
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Coordination Games

A B
A a,a 0,0
B 0,0 b,b

Pure coordination game

a, b > 0

Three equilibria:〈
a, a

〉
,

〈
b, b

〉
, and

〈( b
a + b

,
a

a + b

)
,
( b
a + b

,
a

a + b

)〉
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Coordination Games

A B
A a,a 0,0
B 0,0 b,b

Pure coordination game

a, b > 0

Best response dynamics

% B
0 1a/(a+b)
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Coordination Games

A B
A a,a d,c
B c,d b,b

General coordination game

a > c, b > d

Here the symmetric mixed equilibrium is at
p∗ = (b − d)/(a − c + b − d).

Suppose b − d > a − c. Then p∗ > 1/2. At (1/2, 1/2), A is the
best response. This is not inconsistent with b > a.

I A is Pareto dominant if a > b.
I B is risk dominant if b − d < a − c.
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Coordination Games — Stochastic Stability

Continuous time stochastic process
I Each player has an alarm clock. When it goes off, she makes

a new strategy choice. The interval between rings has an
exponential distribution.

I Strategy revision:
I Each individual best-responds with prob. 1 − ε, Kandori,

Mailath and Robb (1993); Young (1993)
or

I The log-odds of choosing A over B is proportional to the payoff
difference — logit choice, Blume (1993, 1995).
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The Stochastic Process

This is a Markov process on the state space [0, . . . ,N], where the
state is the number of players choosing B.

Logit Choice Mistakes

In both cases, as Prob{best response ↑ 1}, Prob{N} ↑ 1.
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Coordination on Networks

I Is the answer the same on every graph?

.
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Coordination on Networks

I Is the answer the same on every graph?

Mistake: 0 : 0.5 N : 0.5. Logit: N : 1.

101 / 131



General Analysis

I In general, the strategy revision process is an ergodic Markov
process.

I There is no general characterization of the invariant
distribution.

I The answer is well-understood for potential games and logit
updating.
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A General Diffusion Model

I Best response strategy revision. If fraction q or more of your
neighbors choose A , then you choose A .

I Two obvious equilibria: All A and All B.

I How easy is it to “tip” from one to the other? What about
intermediate equilibria?
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A General Diffusion Model

I Imagine that everyone initially uses B.

I Now a small group adopts A .

I When does it spread, when does it stop?

I The answer should depend on the network structure, who are
the initial adopters, and the threshold q.
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Diffusion of Coordination — Line

When the Poisson alarm clock rings, the player best responds to
his neighbors. p∗ < 1/2. Questions:
I Are islands of risk dominance stable?
I Can risk dominance spread?
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Diffusion of Coordination — Lattices

When the Poisson alarm clock rings, the player best responds to
his neighbors. p∗ < 1/4. Questions:
I Are islands of risk dominance stable?
I Can risk dominance spread?
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Diffusion of coordination — General Graphs

I A cluster of density p is a set of vertices C such that for each
v ∈ C, at least fraction p of v ’s neighbors are in C.

The set C = {A ,B,C} is a cluster of density 2/3.

A

B C
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General Graphs

Two observations:

I Every graph will have a cascade threshold.

I If the initial adoptees are a cluster of density at least q, then
diffusion can only move forward.
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General Graphs: Clusters Stop Cascades

Consider a set S of initial adopters in a network with vertices T ,
and suppose that remaining nodes have threshold q.

Claim: If Sc contains a cluster with density greater than
1 − q, then S will not cause a complete cascade.

Proof: If there is a set T ⊂ Sc with density greater than
1 − q, then even if S/T chooses A , every member of
T has fraction more than 1 − q choosing B, and
therefore less than fraction q are choosing A .
Therefore no member of T will switch.
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General Graphs: Clusters Stop Cascades

Claim: If a set S ⊂ V of initial adopters of an innovation with
threshold q fails to start a cascade, then there is a
cluster C ∈ V/S of density greater than 1 − q.

Proof: Suppose the innovation spreads from S to T and
then gets stuck. No vertex in Tc wants to switch, so
less than a fraction q of its neighbors are in T , more
than fraction 1 − q are out. That is Tc has density
greater than 1 − q.
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Networks and Optimality
I Networks make it easier for cascades to take place.

I In the fully connected graph, a cascade from a small group
never takes place. With stochastic adjustment in the mistakes
model, the probability of transiting from all A to all B is O(εqN),
where q is the indifference threshold. On a network, the
probability of transiting from all A to all B is on the order of εK ,
where K is the size of a group needed to start a cascade, and
this is independent of N.

I This is not always optimal!

I Risk dominance and Pareto dominance can be different. This
can be understood as a robustness question. If the population
has correlated on the efficient action, how easy is it to undo?
Hard if the efficient action is risk dominant. If the efficient
action is not risk-dominant, it is easier to undo on sparse
networks than on nearly completely connected networks.
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Community Structure

Under Construction
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Two Problems

Imagine a social network, such as a friendship network in a school
or network of information sharing in a village. Suppose the network
participants represent several ethnic groups, races or tribes.

I How “integrated” is the network with respect to predefined
communities?

I What are the implicit “comunities” of highly mutually
interactive neighbors?

I How do these community structures map onto each other?
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Measuring Segregation

Attributes of physical segregation.

I Evenness — Differential
distribution of two groups across
the network.

I Exposure — The degree to which
different groups are in contact.

I Concentration — Relative
concentration of physical space
occupied by different groups.
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Measuring Segregation

Attributes of physical segregation.

I Centraliztion — Extent to which a
group is near the center.

I Clustering — Degree to which
group members are connected to
others in the group.
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Dissimilarity Index

A city is divided into N areas. Area i has
minority population mi and majority
population Mi . Total populations are m and
M, respectively.

dissimilarity index =
1
2

N∑
i=1

∣∣∣∣∣∣mi

m
−

Mi

M

∣∣∣∣∣∣.
frac. M

frac. m
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Incomplete
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