Notes on Twin Models

Rodrigo Pinto

University of Chicago HCEO Seminar April 19, 2014 This draft, April 19, 2014 8:17am

Figure 1: Standard Confounding Model

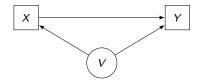
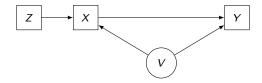


Figure 2: Non-parametric IV Solution



IV Properties

- **1** Independence: $V \perp \!\!\!\perp Z$ and $Y \perp \!\!\!\perp Z|(X, V)$.
- **2** Or: $Y(x) \perp \mathbb{Z}|X$ and $V \not\perp X$.
- **3 Identification:** Based on Assumptions on the causal link between Z and X.

In Pinto(2013):

Theorem 1

In the standard confounding model with IV, where Z is the instrument that takes values on $\{z_1, \ldots, z_{N_Z}\}$, V are unobserved variables and X is the categorical treatment, the following statements are equivalent:

(i) An utility function u representing rational preferences over X, V, Z is additive in Z, V, *i.e.*:

$$u(X,Z,V) \equiv u_1(X,V) + u_2(X,Z);$$

(ii) For any $z, z' \in \text{supp}(Z)$ and $v, v' \in \text{supp}(V)$ such that:

$$X|(Z = z, V = v) = t \text{ and } X|(Z = z', V = v') = t,$$

then $X|(Z = z, V = v') = t \text{ or } X|(Z = z', V = v) = t.$

- (iii) Each Stata Matrices A_x ; $x \in supp(X)$ is a Lonesum Matrix.
- (iv) Each Stata Matrices A_x ; $x \in supp(X)$ is equivalent to its maximal matrix \bar{A}_t .
- (v) Treatment X is separable on V and Z, that is:

there exist functions, $f_x : supp(Z) \rightarrow [0,1]$ and $g_x : supp(V) \rightarrow [0,1]; \forall x \in supp(X)$

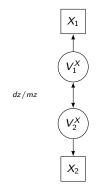
such that
$$\mathsf{P}_E\left(X = \sum_{x \in \mathrm{supp}(X)} \mathbf{1}[f_x(Z) \le g_x(V)] \cdot x\right) = 1.$$

Rodrigo Pinto

Twins - Two Useful Properties

- Confounding Dependence: Twins share, to some degree, the confounding variables causing outcomes.
- Independent Variation: While Monozygotic twins (MZ) share the same genetic endowment, Dizygotic twins don't (DZ);

Figure 3: Twin Identification – Two Properties



Classification of Confounding Variables

Properties (1) and (2) suggest a partition of all confounding variables into:

- A.Genetic Endowment: confounding variables that are equal only if twins are MZ;
- C.Shared Environment: confounding variables that are equal for twins regardless of type (MZ or DZ);
- **3 E.Non-shared Environment:** remaining confounding variables.
- Exclusion Restriction: No confounding variables is equal for DZ and different for MZ;

	Gene	tıc İype	
Are Confounding Variables equal across twins?	DZ	MZ	Variables
1. Genetic Endowment	X	✓	(A_1^X, A_2^X)
2. Shared Environment	1	1	$(C_1^{\overline{X}}, C_2^{\overline{X}})$
3. Non-shared Environment	X	×	$(E_1^{\overline{X}}, E_2^{\overline{X}})$
4. Exclusion Assumption	1	X	

Statistical Properties

Classification based on Properties (1) and (2) generate the following properties:

1 Genetic Endowment:

$$\Pr(A_1^X = A_2^X | MZ = 1) = 1.$$

2 Shared Environment:

$$\Pr(C_1^X = C_2^X | MZ = 1) = \Pr(C_1^X = C_2^X | MZ = 0) = 1.$$

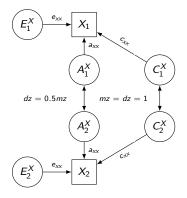
3 Non-shared Environment (Assumption):

$$E_1^X \perp\!\!\perp E_2^X | (MZ = 1), (E_1^X \perp\!\!\perp E_2^X | MZ = 0).$$

4 Does not justify:

$$A_i^X \perp\!\!\perp C_i^X, A_i^X \perp\!\!\perp E_i^X, C_i^X \perp\!\!\perp E_i^X;$$

Figure 4: Standard Univariate ACE Model



Properties of the Standard ACE Model

1 Variance Decomposition: heritable $\left(\frac{a_{xx}^2}{a_{xx}^2+c_{xx}^2+a_{xx}^2}\right)$, shared environment $\left(\frac{c_{xx}^2}{a_{xx}^2+c_{xx}^2+a_{xx}^2}\right)$ or non-shared environment $\left(\frac{e_{xx}^2}{a_{xx}^2+c_{xx}^2+a_{xx}^2}\right)$.

2 Concept: Decompose the confounding variables V_1 , V_2 into:

• Variables that are independent between twins (E_1^X, E_1^X) :

$$(E2, E1) \perp (A1, A2, C1, C2, Y2)$$
 and $E1 \perp E2$

• Variables that are equal for both twins types (C_1^X, C_1^X) :

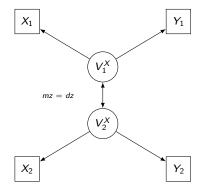
$$\Pr(C_1^X = C_2^X | MZ) = \Pr(C_1^X = C_2^X | DZ) = 1$$

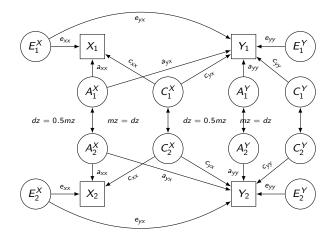
• Variables that are not equal for both twins types (A_1^X, A_1^X) :

$$\Pr(A_1^X = A_2^X | MZ) = 1, \ \Pr(A_1^X = A_2^X | DZ) \neq 1$$

3 Critics: No Gene×Environment Interaction $(A_1^X, A_2^X) \perp (C_1^X, C_2^X)$.

Figure 5: What about the Bivariate Case?





Basic Goal of Economics

- Main Goal: Evaluating the impact of X on Y instead of Variance Decomposition.
- **Question:** How Twin Data can help on identifying the causal impact of *X* on *Y*?

Analysis based on the Bivariate ACE Diagram

- Approach: Add a causal link X → Y in the Bivariate ACE Model.
- **Problem:** Model not identified.
- **Solution:** Assume that all confounding effects are equally shared by MZ Twins (ACE- β Model).
- Estimation: Linear Effect of X on Y can be estimated by Twin Fixed Effects using MZ Data.

Figure 7: Bivariate ACE Diagram

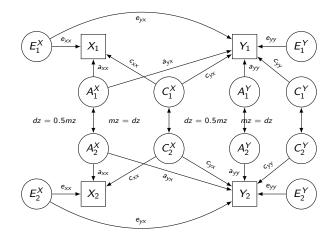


Figure 8: Bivariate ACE Diagram With Causal Link $X \rightarrow Y$

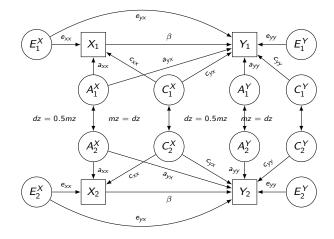
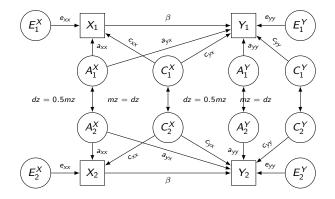


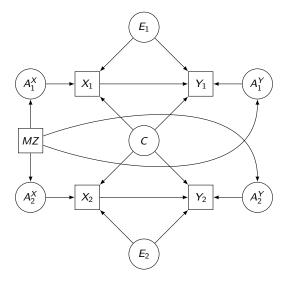
Figure 9: ACE- β Diagram



Interpreting the ACE- β Model

- **Identification:** Strong assumption of no confounding effects under outcome difference for linear models.
- **Neglects** the potential use of Property (2) of Twins data as an identification tool, only needs MZ to estimate β .
- Generate an IV: $(\Delta X) \perp (A, C)$ but $\Delta X \not\perp X$.
- Estimation: Standard Twin Fixed Effects.
- Pending Critics: No Gene×Environment Interaction;

Figure 10: Non-parametric Monozygotic and Dizygotic ACE



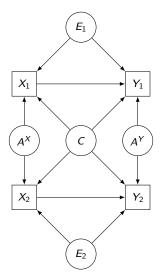
Characteristics of the Nonparametric ACE Model Setting the Problem

- No IV: MZ des not have IV properties.
- **Conditional Independence Relations:** Model generates 341 total conditional independence relations and 141 unique ones.
- Additional Restrictions: Model cannot be characterized solely as a DAG.
- Four Additional Independence Relations:

• Equality in Distributions:

$$X_1 = {}^d X_2, \quad Y_1 = {}^d Y_2, \quad A_1^X = {}^d A_2^X, \quad A_1^Y = {}^d A_2^Y, \quad E_1 = {}^d E_2.$$

Figure 11: Non-parametric Monozygotic and Dizygotic ACE



Characteristics of the Nonparametric MZ ACE Model Setting the Problem

- **Conditional Independence Relations:** Model generates 32 unique conditional independence relations.
- Four Additional Independence Relations:

• Additional Distribution Equalities:

$$X_1 = {}^d X_2, \quad Y_1 = {}^d Y_2, \quad E_1 = {}^d E_2,$$

Identification of the Intergenerational Elasticity Equation (IGE) Under Gene-Envinonment Interactions

• **IGE:** Often modeled as an AR(1):

- Problems:
 - AR(1) is a simplistic approach of a complex process;
 - β is not a causal effect of X in Y,
 - but rather a summary of confounding factors that operate on the income of both parents and children.
- Question: How Twin Data can help identify the IGE process?

23 / 32

Figure 12: IGE AR(1) Diagram

Figure 13: Underlying IGE Process Diagram

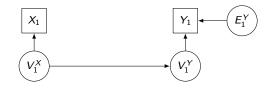


Figure 14: Underlying IGE Process Diagram (Parental Twins)

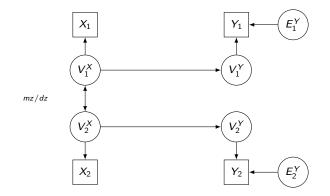


Figure 15: ACE/IGE – Partitioning V (Twin Parents)

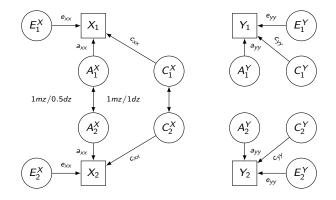
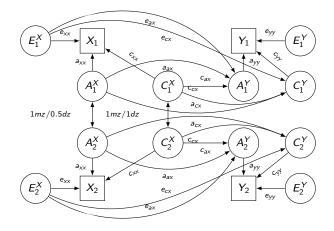


Figure 16: ACE/IGE Diagram (Twin Parents)



Problems with the ACE/IGE Model

- Equal Variances by Twin Type: Var(X|MZ) = Var(X|DZ).
- Even Worse: The Model is not Identified!
- Solution: Generalize.
 - Twin Siblings can affect each other income.
 - Allow for cross fertilization due to twin's genetic endowment.

29 / 32

Figure 17: ACE/IGE Diagram (Twin Parents)

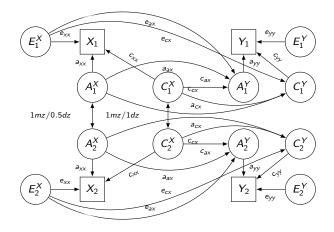


Figure 18: Modified ACE/IGE Diagram (Twin Parents)

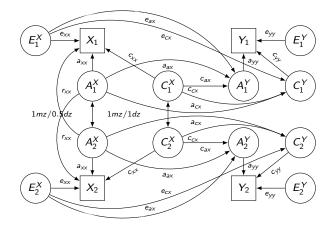


Figure 19: Bivariate ACE/IGE Diagram With GxE Interaction

