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Nutrition: a quintessential sustainable 
development goal

3.1 million annual 
deaths under the age 

of five (~45% of 
under-five mortality)

Lancet Maternal & Child 
Nutrition Series, 2013

34 countries harbor 
90% of the child 

malnutrition burden



Multi-center reference growth study (1997 – 2003)
WHO Multi-Center Growth Reference Study from approximately 8500 
children from widely differing ethnic backgrounds and cultural settings 
(Brazil, Ghana, India, Norway, Oman and the USA) assessing the 
growth and development of infants and young children around the 
world.

Z-scores:
Height-for-Age
Weight-for-Age
Weight-for-Height

Defining nutritional status according 
to the World Health Organization

A single international 
standard that is the best 
description of growth for all 
children from birth to five 
years of age.



Defining nutritional status according 
to the World Health Organization

WLZ score < -3 Bipedal edema MUAC < 11.5 cm
Diagnostic criterion and presentation of Severe Acute Malnutrition:

Khichuri HalwaPlumpy-Nut RUTF

Therapeutic foods to treat malnutrition

RUTF Khichuri Halwa

Energy (Kcal) 530-545 145 240



experimental (and computational) approaches that together inform the 
design, execution and interpretation of human studies.

What is changing about what we eat?
Changes in dietary consumption patterns affect many aspects of human 
biology. To fully understand the determinants of nutritional status, we 
need to know what people are eating and how these diets are changing. 
Unfortunately, accurate information of this type is hard to obtain, and 
when available it generally covers a relatively limited time period. As 
a corollary, searchable databases that effectively integrate information 
obtained from the surveillance efforts of many international and 
national organizations (such as the World Health Organization, the UN 
Food and Agriculture Organization and the United States Department 
of Agriculture (USDA) Economic Research Service) are needed to 
monitor changing patterns of food consumption in different human 
populations. Analysis of USDA data that track the availability of more 
than 200 common food items between 1970 and 2000 shows that diets in 
the United States have changed in terms of both the overall caloric intake 
and the relative amounts of different food items (http://www.ers.usda.
gov/Data/FoodConsumption). Linear regression of total caloric intake 
over time shows that the average number of kilocalories consumed per 
day increased markedly over this 30-year period (R2 = 0.911, P < 10−15). 
This is consistent with estimates from the US National Health and 
Nutrition Examination Survey (NHANES), which indicate that adult 
men and women increased their daily caloric intake by 6.9% and 21.7%, 
respectively, during the same period10. If total caloric intake is analogous 
to ‘primary productivity’ in macro-ecosystems, in which primary 
productivity is used as a proxy for available energy, then increasing the 
amount of energy input from the diet would be predicted to affect the 
number of microbial species living in the gut of a single host, as well 
as the magnitude of the compositional differences that exist between 
different hosts or even different regions of a single gut (see ref. 11 for 
discussions about the mechanisms underlying productivity–species 

richness relationships in macro-ecosystems). Intriguingly, metagenomic 
studies of bacterial composition in the faecal microbiota of obese 
and lean twins living in the United States have shown that obesity is 
associated with decreased numbers of bacterial species4. Reductions 
in diversity could affect community function, resilience to various 
disturbances and the host immune system.

During the past 30 or so years, the North American diet has also 
shifted in terms of the relative contributions of different foods to total 
energy intake. Since 1970, two dietary ‘epochs’ can be distinguished 
based on the contribution of grains to overall calories (the mean 
increase in daily carbohydrate intake for men and women during this 
period was 62.4 g and 67.7 g, respectively10). The consumption of other 
food items has also changed: Spearman’s rank correlations between food 
availability and time, followed by adjustments of P values to reflect false 
discovery rates, show that the representation of 177 out of 214 items 
tracked by the USDA has increased or decreased significantly in US 
diets since 1970. For example, Americans now eat less beef and more 
chicken, and corn-derived sweeteners have increased at the expense 
of cane and beet sugars. Furthermore, methods of food modification 
and preparation have changed. Comparable data are needed for other 
countries with distinct cultural traditions, including countries in which 
people are undergoing marked transformations in their socio-economic 
status and lifestyles.

We know from metagenomic studies of the human gut microbiota 
and microbiome that early postnatal environmental exposures have an 
important role in determining the overall phylogenetic structure of an 
adult human gut microbiota. The assembly of the microbiota towards 
an adult configuration occurs during the first three years of life12, and 
features of the organismal and gene content of gut communities are 
shared among family members and transmitted across generations of a 
kinship4. We also know that dietary habits influence the structure of the 
human genome. For example, populations that consume diets high in 
starch have a higher copy number of the salivary amylase gene (AMY1) 
than those consuming low-starch diets13. We know that these habits also 
affect the gut microbiome. A wonderful illustration of the latter point 
is provided by a microbial β-porphyranase in Japanese populations. 
Zobellia galactanivorans is a marine member of the Bacteroidetes 
that can process porphyran derived from marine red algae belonging 
to the Porphyra genus. Homologues of porphyranase genes from 
Z. galactanivorans are present in the human gut bacterium Bacteroides 
plebeius and are prominently represented in the microbiomes of 
Japanese but not North American citizens. This finding led to the 
suggestion that porphyranase genes from Z. galactanivorans or 
another related bacterium were acquired, perhaps through horizontal 
gene transfer, by a resident member of the microbiota of Japanese 
consumers of non-sterile food, and that this organism and gene were 
subsequently transmitted to others in Japanese society14. Together, these 
observations lead to the notion that systematic changes in overall dietary 
consumption patterns across a population might lead to changes in the 
microbiome, with consequences for host nutritional status and immune 
responses. 

We also know, from work in gnotobiotic mice that have received 
human faecal microbial community transplants, that the relative 
abundances of different bacterial species and genes in the gut microbiota 
are highly sensitive to different foods3. Gnotobiotic mice containing 
defined collections of sequenced human gut symbionts or transplanted 
human faecal microbial communities could provide an approach for 
modelling the effects of different dietary epochs on the gut microbiota 
and on different facets of host biology. If the desired result is an account 
of the effects of individual food items or nutrients, then feeding the 
animals a series of defined diets, each with a different element removed 
or added, might be an appropriate strategy if the food ingredients for the 
epoch are known and available. If the focus is on the effects of overall 
differences in dietary habits within or between groups of humans, 
then diets should reflect the overall nutritional characteristics of the 
different groups and not merely be representative of a single individual. 
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Figure 1 | A schematic of the proposed relationships between the 
gut microbiota, the immune system and the diet, which underlie the 
development of malnutrition. Undernutrition is associated with several 
defects in the innate and adaptive immune systems, which, in turn, are 
associated with increased predisposition to diarrhoeal illnesses. Recurrent 
(enteric) infections predispose to macronutrient and micronutrient deficiencies, 
as well as impaired intestinal mucosal barrier function77. These factors lead to 
a cycle of further susceptibility to infection and worsening nutritional status. A 
confounding problem is that vaccines designed to protect children from certain 
pathogens (including enteropathogens) show poor efficacy in areas of the world 
where poor nutrition is rampant74. One testable hypothesis is that the microbiota 
contributes to disease risk and pathogenesis. Diet shapes gut microbial 
community structure and function, and the microbiota adapts in ways that 
promote nutrient processing; the ability of the microbiota to process a given diet 
affects the nutrient and energetic value of that diet. The microbiota and immune 
systems co-evolve: malnutrition affects the innate and adaptive immune systems 
as well as the microbiota. The microbiota acts as a barrier to enteropathogen 
infection; this barrier function may be disrupted by malnutrition, as well as 
by perturbations in immune system function. The microbiota affects nutrient 
processing by the host, including the expression of host genes involved in 
nutrient transport and metabolism.
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Undernutrition (malnutrition) is not caused by food insecurity 
alone, but by a variety of intra- and inter-generational factors, all 
of which could be influenced by the gut microbiota.

The gut microbiota as part of the 
vicious cycle of malnutrition

Altered
immune
function



The human gut microbiota: community of 
microbes that live along the human gut.

Microbiome refers to the genetic sequence 
of these microbes.

Food shapes the balance of power in this 
community and can in turn affect:
- Nutritional absorption
- Metabolism
- Immunity and Vaccination
- Susceptibility to Infections
Central Hypothesis: 
Human gut microbes develop like the rest of our organs, and this 
development is affected in undernutrition

The gut microbiota can be thought of 
as another organ in the human body



Villi microvascular network regulated by microbes via Paneth cells  

Microbes in turn influence host 
physiology and development

Stappenbeck, Hooper and Grodon, PNAS 2002

- Gut barrier function
- Modulation of regulatory T cells and other immune cell populations
- Intestinal motility
- SCFA production
- TMAO production, tryptophan, bile salt metabolism



Yatsunenko
et al., 2012

Distance 
to adult

Age (years)

Age is a major factor in shaping what bacterial communities look 
like in the gut

Gut microbial communities change 
dramatically in early life

Based on a pair-wise phylogenetic distance based approach, 
completely unsupervised , children approximate their parents over the 
time course of two years



Photos reproduced with consent courtesy 
of icddr,b Bangladesh

Collaboration with ICDDR,B

Oral Rehydration therapy was discovered 
here, now implemented worldwide as life-
saving therapy for cholera.

Study participants are inhabitants of an 
urban slum area in Mirpur, Dhaka

Birth cohort and nutritional status data were 
collected along with biospecimens.

Collaboration to study undernutrition 
in Mirpur, Bangladesh



Pulverize bio-specimens 
& extract genomic DNA

Biospecimens provide a 
non-invasive measure of 
bacterial diversity in the 

gastrointestinal tract

Multiplex high 
throughput 
sequencing

PCR amplify sample DNA 
using a 16S rRNA gene 

(phylogenetic ‘barcode of 
bacterial life’)

Group related sequences into Operational Taxonomic Units (OTU) based 
on alignment with 97% sequence identity.

Bacterial species/strains/taxa are defined based on 97% identity

Methods to characterize the bacterial 
component of the gut microbiota



Question: Given a healthy child’s diaper biospecimen, can we 
accurately predict the age of a child? Can we use this as a 
measurement of a child’s gut development?

Random Forests: decision-tree based machine learning method applied
to identify bacterial strains that can serve as markers of the aging 
process.

Advantages:
1. Non-parametric assumptions
2. Ability to deal with large number of features relative to data-points 

(predictors >> number of data points)
1. Provides a ranking of features that assist with feature selection
2. Suited for sparse dataset types (tables with lots of 0’s)

Disadvantages: 
black-box nature of algorithm, possibility of over-fitting, limited by the data 
provided for training

Application of a machine learning approach to 
developing microbiota maturation metrics 



Defining the stages of gut microbiota 
development using RF regression

Y is age of child ~ Xi are the abundances of 
each type of gut bacteria, i



Identification of bacterial taxa as biomarkers 
of healthy gut microbiota maturation

Steps to identification of 
age-discriminatory taxa:

1. Rank bacterial taxa in 
order of mean-squared 
error, permutation-based 
importance score 

2. Cross-validate within 
training set to estimate 
number of taxa needed for 
accurate prediction

3. Generate sparse model 
and validate model in 
samples from a different 
set of unrelated children
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Validation of a sparse Bangladeshi model 
consisting of age-discriminatory taxa

2013-10-13729 Subramanian et al. Fig. 1

a b

c

Age (mo)
1 24

Age (mo)
1 24

MaxMin

Relative abundance
of a bacterial taxon

Taxonomic annotation

In
cr

ea
si

ng
 im

po
rta

nc
e 

in
  a

cc
ur

ac
y 

of
 m

od
el

% Increase in Mean Squared Error (MSE)

Healthy singletons (training set) Healthy twins & triplets

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Rank OTU ID 

Age-discriminatory
model training

Model applied to
other singletons

Model applied to
twins & triplets

Chronologic age of a child (mo)

OTU ID 

Age (mo)
1 24

Healthy singletons (test set) Taxonomic annotation

0 6 12 18 24
0

6

12

18

24

0 6 12 18 24
0

6

12

18

24

Chronologic age of a child (mo)

M
ic

ro
bi

ot
a 

ag
e 

(m
o)

0 6 12 18 24
0

6

12

18

24

Chronologic age of a child (mo)

326792
194745
189827
364234
185951
212619
287510
469873
361809
261912
191687
470663
9514
312461
181834
148099
470139
533785
15141
108747
561636
561483
72820
217996

Faecalibacterium prausnitzii

Ruminococcus sp 5 1 39BFAA

Ruminococcus sp 5 1 39BFAA

Ruminococcus sp 5 1 39BFAA

Clostridiales sp.

Unknown bacteria
Catenibacterium mitsuokai

Bifidobacterium sp.

Ruminococcus torques

Dorea formicigenerans

Dorea longicatena

Lactobacillus ruminis

Haemophilus parainfluenzae

Clostridium sp.

Clostridium sp.

Weissella cibaria

Clostridium ramosum

Bifidobacterium sp.

Lactobacillus mucosae

Streptococcus thermophilus

Streptococcus sp.

Bifidobacterium sp.

Bifidobacterium longum

Staphylococcus sp.

326792
189827
470663
191687
72820
194745
15141
561483
217996
364234
287510
261912
361809
108747
533785
9514
561636
312461
470139
181834
148099
469873
185951
212619

Faecalibacterium prausnitzii

Ruminococcus sp 5 1 39BFAA

Lactobacillus ruminis

Dorea longicatena

Bifidobacterium longum

Ruminococcus sp 5 1 39BFAA

Lactobacillus mucosae

Bifidobacterium sp.

Staphylococcus sp.

Ruminococcus sp 5 1 39BFAA

Catenibacterium mitsuokai

Dorea formicigenerans

Ruminococcus torques

Streptococcus thermophilus

Bifidobacterium sp.

Haemophilus parainfluenzae

Streptococcus sp.

Clostridium sp.

Clostridium ramosum

Clostridium sp.

Weissella cibaria

Bifidobacterium sp.

Clostridiales sp.

Unknown bacteria

0 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f  
97

%
 ID

 O
TU

s

Cross-Validation Error

12

24

36

48

60

400

1200

1

12 18 24 30 36

Training set Validation sets

Starting materials:

Samples from 
healthy children
(25 singletons, 11 
twin pairs, 1 set of 
triplets; 996 fecal 
samples; 50 
children)

Subramanian 
et al., 2014



(2) Microbiota-for-age Z score (MAZ)

(predicted microbiota age – median)
standard deviation of microbiota age

Definition of two microbiota metrics 
based on the Bangladeshi model

(1) Relative microbiota maturity =

microbiota age of a given child –
microbiota age for healthy children 
of similar chronological age



Application of metrics to a cohort of 
Bangladeshi twins and triplets
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Presentation of severe acute 
malnutrition (SAM)

Khichuri Halwa

Plumpy-
Nut 
RUTF

Weight-for-Length Z score < -3 SD
Bipedal edema, MUAC < 11.5 cm

Stabilization with Milk Suji (porridge)

Oral Rehydration

Antibiotics

Administration of therapeutic foods



Inpatient treatment of children with 
severe undernutrition



Randomized clinical trial comparing 
two food interventions to treat SAM
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Acute Phase of SAM
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in terms of age-adjusted 
height and not 
completely with weight.



Persistent immaturity of the gut 
microbiota in children with SAM

2013-10-13729 Subramanian et al. Fig. 3
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Microbiota immaturity evident prior 
to administration of antibiotics



Conclusions from Bangladesh study

More prolonged food-based interventions of varying 
composition and/or addition of gut microbes may be 
beneficial

Two types of therapeutic foods produce an improvement 
in microbiota maturity indices that was not sustained

Age-discriminatory taxa may themselves serve as 
therapeutic agents and/or targets of next generation 
microbiota-directed therapeutic foods



Gut microbial milestones as metrics to 
monitor therapeutic interventions

Subramanian et al., 2015

Bacterial strains discriminatory for age in healthy children provide a way to 
characterize malnourished states and human postnatal development

Beyond their diagnostic value these features can be now investigated in 
terms of their functional roles in cell-based, animal and human studies



Future directions related to the studies presented

Relationship between 
maternal microbes and 

infant microbes?

Relationship between 
complex food consumption 
patterns and gut bacteria?

Relationship between gut 
microbial organ development 

and development of other 
organs?

Brain, Bone, Immune System
Development

Subramanian et al., 2015

Further questions?



Testing causality in a humanized 
gnotobiotic model of kwashiorkor

Smith, Yatsunenko et al., Science 2013

Malawian twin pair discordant for kwashiorkor



Testing causality in a humanized 
gnotobiotic model of stunting

Blanton et al., 
Science 2016

Malawian singletons with chronic forms of undernutrition



Pleiotropic effects in humanized mouse 
models of undernutrition

Charbonneau et al., Cell 2016



Neonatal sepsis and an early synbiotic
interventions

Community-based, double-blind, placebo-controlled randomized trial in 
149 randomly chosen villages in Odisha state



Microbiota directed complementary 
foods for undernutrition



Preserving and nurturing our 
resources for a sustainable future
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