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In these notes, I discuss identification problems in the uncovering of empirical 

evidence on social interactions. 

 

The workhorse of empirical research on social interactions is the linear in means 

model.  

 

The version of this model which has been the focus of most identification analysis 

is due to Manski (1993).  
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The model assume that individuals are arrayed across nonoverlapping groups g  

and make choices iω  following 

 

 ,
e

i i g i g ik cx dy Jmω ε= + + + +   (1)  

 

where ix  denotes a r −  length vector of individual characteristics, gy  denotes an 

s −  length vector of group characteristics, sometimes cannled contextual effects, 

and. ,
e
i gm  denotes the expected average behavior of others in the group, i.e.  

 

 ( ),
1 ,e

i g j g
j gg

m E x y
n

ω
∈

= ∑    (2) 
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Note that (2) ignores the effect of an individual’s iε  on his beliefs about the average 

choice. As such, (2) is not strictly rational. As will be discussed, the linear in means 

model as described here is an approximation of a microfounded model. 
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Claims about social interactions are, from the econometric perspective, equivalent 

to statements about the values of d  and J .   

 

The statement that social interactions matter is equivalent to the statement that at 

least some element of the union of the parameters in d  and J  is nonzero.  The 

statement that contextual social interactions are present means that at least one 

element of d  is nonzero.   

 

The statement that endogenous social interactions matter means that J  is 

nonzero.   
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In Manski’s original formulation, g gy x= , where 1
g i

i gg

x x
n ∈

= ∑  denotes the average 

across i  of ix  within a given g , which explains the model’s name.  Regardless of 

whether they are equal, I assume that both gy  and gx  are observable to individuals 

and discuss how to relax this below.   
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Assumptions on Errors 
 

First the expected value of iε  is 0, conditional on the information set 

( ), , ,i g gx x y i g∈ 1 

 

 ( ),  , , , 0i i g gi g E x x y i gε∀ ∈ =   (3) 

Second  

 

 ( )
For each , , ,  such that  or 

, , , , , , , 0 i j i g g j h h

i j g h i j g h

cov x x y i g x x y j hε ε

≠ ≠

∈ ∈ =
  (4) 

 

                                                           
1The conditioning argument   means that one is conditioning on the fact that i  is a 
member of group g . 
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Eq. (4) eliminates conditional cova i g∈ riation between the errors.  The inclusion 

of the group memberships, e.g. i g∈  rules out some relationship between the 

identity of the group and model errors, thereby allowing us to treat groups as 

exchangeable.  
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Eqs. (1)-(4) imply that agents in a group have common expectations about the 

expected average choice. Under rational expectations, 

 

 
1

g ge
g g

k cx dy
m m

J
+ +

= ≡
−

  (5) 

 

The equation says that the individuals’ expectation of average behavior in the 

group equals the average behavior of the group, and this in turn depends linearly 

on the average of the individual determinants of behavior, gx , and the contextual 

interactions that the group members experience in common.  The condition 1J <  

is required for equation  to make sense. 
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Reduced form 
 

Substitution of (5) into (1) eliminates gm  and so provides a reduced form version 

of the linear in means model in that the individual outcomes are determined entirely 

by observables and the individual-specific error: 

 

 , = .
1 1 1i g i g g i

k J dcx cx y
J J J

ω ε+ + + +
− − −

  (6) 
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This reduced form corresponds to the bulk of the empirical literature which has 

focused on the regression 

 

 , 0 1 2= .i g i g ix yω π π π ε+ + +   (7) 

 

where the parameters 0 1 2, ,π π π  are taken as the objects of interest   

 

A comparison of  (7) with (6) indicates how findings in the empirical literature that 

end with the reporting of 0 1 2, ,π π π  inadequately address the task of fully 

characterizing the social interactions that are present in the data.   
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Instrumental variables and the reflection problem 
 

As follows from (6), if gω  is projected against the union of elements of gx  and gy , 

this produces the population mean gm .  Hence, we can proceed as if gm  is 

observable.   

 

Put differently, our identification arguments rely on the analogy principle which 

means that one works with population moments to construct identification 

arguments.   

 

Since gy  appears in (1)  it will not facilitate identification.  As we shall see, 

identification via instrumental variables is determined by the informational content 

of gx  relative to gy . 
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As first recognized by Manski (1993), identification can fail for the linear in means 

model when one focuses on the mapping from reduced form regression 

parameters to the structural parameters.  Manski’s assumes g gy x= . In this case, 

eq. (5) reduces to 

 

 ( )
1

g
g

k c d y
m

J
+ +

=
−

  (8) 

 

The regressor gm  in (1) is linearly dependent on the other regressors, i.e. the 

constant and gy .   This linear dependence is the reason that identification fails: the 

comovements of gm  and gy  are such that one cannot disentangle their respective 
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influences on individuals.  Manski (1993) named this failure the reflection problem.  

Metaphorically, if one observes that ,i gω  is correlated with the expected average 

behavior in a neighborhood, (8) indicates it may be possible that this correlation is 

due to the fact that gm  may simply reflect the role of  gy  in influencing individuals.  

 

As such, the reflection problem is a variant of the classical failure of identification 

in a simultaneous equations models. 
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Conditions for Identification 
 

Under what conditions is this model identified?   

 

A necessary condition is that Manski’s assumption that g gy x=  is relaxed.  This 

will allow for the possibility gm  is not linearly dependent on the constant and gy .  

The reason for this is the presence of the term 
1

gcx
J−

 in eq. (6). This term can break 

the reflection problem as gm  may not be linearly dependent on the other regressors 

in (6).  This immediately leads to the argument in Brock and Durlauf (2001b) that 

a necessary condition for identification in the linear in means model, is that there 

exists at least one element of ix  whose group level average is not an element of 

gy , while Durlauf and Tanaka (2008) provide a sufficient set of conditions.   
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Consider the projections ( )1, ,g g gproj y xω  and ( )1,g gproj yω , where 1 is simply a 

random variable with mean 1 and variance 0, corresponding to the constant term. 

The first projection provides an optimal linear forecast (in the variance minimizing 

sense) of gω , conditioning on the random variables defined by 1 and the elements 

of gy  and gx , whereas the second projection provides the optimal linear forecast 

when only 1 and the elements of gy  are used.  The difference between the two 

projections thus measures the additional contribution to predicting gω  beyond what 

can be achieved using gx  in addition to 1 and gy .  When this marginal contribution 

is nonzero, then it is possible to to identify the structural parameters in (1) using 

instrumental variables for gω  or equivalently for gm .  Formally,  

 

 
 



18 
 

Theorem 1. Identification of the linear in means model of social interactions. 
 

The parameters ( ), , ,k c J d  are identified if and only if 

( ) ( )1, , 1, 0g g g g gproj y x proj yω ω− ≠  

 

The intuition for the theorem is simple. Identification requires that one can project 

gω  (equivalently) onto a space of variables such that the projection is not collinear 

with the other regressors in the model.2 

 

 

                                                           
2The conditions of the theorem do not preclude a functional dependence of ix  on gy , which, combined with the uniqueness 

of gm , means that the nonparametric analog to the model is not identified, following Manski (1993, Proposition 3). This 
observation builds on discussion in Manski (1993, p. 539).   



19 
 

Theorem 1 was derived under the assumption that gx  and gy  are known to the 

individual decisionmakers at the time that their choices are made. This assumption 

is a strong one and further may appear to be inconsistent with our assumption that 

gω  is unobservable to them.  This latter concern is not tenable: in a context such 

as residential neighborhoods, it is possible for a contextual effect such as average 

income to be observable whereas the school effort levels of children in the 

neighborhood are not.  However, it is important to understand the implications of 

relaxing our baseline informational assumptions on identification.  This is the 

contribution of Graham and Hahn (2005).    
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The models they study can be subsumed as variants of a modified version of (1) 

 

 ( ),i g i g g ik cx dE y F Jmω ε= + + + +   (9) 

 

where individuals are assumed to possess a common information set F .  As such, 

it is clear that the conditions for identification in Theorem 1 are easily generalized. 

One simply needs a set of additional instruments gq  such that the elements of gq  

can jointly instrument ( )gE y  and gm .  As they observe, the variables gq  constitute 

exclusion restrictions and so require prior information on the part of the analyst.  

For their context, gy  is a strict subset of gx , so it is difficult to justify the observability 

of those elements of gx  that do not appear in gy  when the others are by 

assumption not observable.   
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In our view, the appropriate route to uncovering valid instruments gq , under the 

Graham and Hahn information assumptions, most likely requires the development 

of an auxiliary model of ix  and hence gx .   

 

In other words, Graham and Hahn’s concerns reflect the incompleteness of  (9) in 

the sense that the individual characteristics are not themselves modeled.  Hence, 

we interpret their argument as one that calls for the embedding of outcomes such 

as (9) in a richer system, possibly one including dynamics, which describes how 

individual characteristics are determined.  We fully agree with Graham and Hahn 

that in isolation, finding valid instruments for (9) is difficult, but would argue that 

this difficulty reflects the limitations of studying ,i gω  in isolation rather than as one 

of a set of equilibrium outcomes. 
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Variations of the linear in means model 
 

We now evaluate the reflection problem for some econometric models that differ 

from (1) in various ways that are common in empirical work.   

 

Once one considers econometric structures outside the linear cross-section 

framework, the reflection problem may not arise, even if there is a one-to-one 

correspondence between individual and contextual interactions.   

 

We consider three alternative structures. 
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Partial linear-in-means models 

 

The linear structure in (1) is theoretically justified under strong function form 

assumptions for utility, which leads to the question of whether relaxation of the 

linearity assumption affects identification. One such relaxation is studied in Brock 

and Durlauf (2001) and involves a particular nonlinear generalization under rational 

expectations: 

 

 ( ),i g i g g ik cx dy J mω µ ε= + + + +   (10) 

 

 

This type of structure is known as a partial linear model.   
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Brock and Durlauf establish that the parameters of this model are identified for 

those elements of the space of twice differentiable functions, for known ( )gmµ , so 

long as 
( )2

2 0g

g

m
m
µ∂

≠
∂

, outside of nongeneric cases.   

 

The intuition is straightforward; the reflection problem requires linear dependence 

between group outcomes and certain group-level aggregates, which is ruled out 

by the nonlinearity in (10).  We should note that there does not exist any 

identification results, as far as we know, if the functional form for ( )gmµ  is 

unknown, so in this sense the identification of  (10) does not exploit results from 

the semiparametric literature on partial linear models. 
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The finding that partial linear variants of (1) do not suffer from the reflection 

problem is not a surprise from the perspective of the simultaneous equations 

literature.  

 

McManus (1992), in what appears to be an underappreciated paper, illustrates 

how for a broad class of parametric nonlinear simultaneous equations models, 

subsets of nonidentified models are nongeneric.  For example, McManus (1992, 

pg. 8) shows in his pedagogical example that “…First the set of δ  values which 

correspond to identified (non identified) models forms an open and dense 

(nowhere dense) subset of the real line…”  He develops a general argument which 

formalizes this basic idea.  Brock and Durlauf (2001, p. 3371) adapt McManus’s 

argument to show that “…the local nonidentification of the linear-in-means model 

can be perturbed away by a 2C -small change.”  See Brock and Durlauf (2001) for 

the details of this extension to social interactions models.  
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Dynamic linear models 
 

Similarly, dynamic analogs of the linear in means model may not exhibit the 

reflection problem. Brock and Durlauf (2001) illustrate this with the dynamic social 

interactions model 

 

 , , , , , 1 ,= .i g t i t g t g t i tk cx dy mω β ε−+ + + +   (11) 
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This model avoids linear dependence between the contextual and endogenous 

variables since 

 

 , ,
, =

1
g t g t

g t

k cx dy
m

Lβ
+ +

−
  (12) 

 

where L  is a lag operator.  Eq. (12) implies that ,g tm  depends on the entire history 

of ,g tx  and ,g ty .  This model is essentially backwards looking and is driven by the 

idea that current behaviors are directly affected by past beliefs.   
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Similar results hold for forward looking models.  An example of a model in this 

class is 

 

 , , , , , 1 ,=i g t i t g t g t i tk cx dy mω β ε++ + + +   (13) 

 

 

This model is equivalent to the workhorse geometric discount model in rational 

expectations (Hansen and Sargent (1980)).  The equilibrium average choice level 

for a group equals, following Hansen and Sargent, 

 

 ( ), , ,
0

=
1

s
g t t g t s g t s

s

km E cx dyβ
β

∞

+ +
=

+ +
− ∑   (14) 
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It is immediate that regressors are linearly independent so long as ,g tx  and ,g ty  are 

not both random walks.   

 

Identification of this class of dynamic models was originally studied in Wallis 

(1980). 
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Hierarchical models 
 

In fields such as sociology, social interactions are typically explored using 

hierarchical models, i.e. models in which contextual interactions alter the 

coefficients that link individual characteristics to outcomes.  See Bryk and 

Raudenbush (2001) for a full description of the method.  T 
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The reason for this appears to be a different conceptualization of the meaning of 

social interactions in economics in comparison to other social sciences.   

 

Hierarchical models appear, in our reading, to be motivated by a view of social 

groups as defining ecologies in which decisions are made and matter because 

different social backgrounds induce different mappings from the individual 

determinants of these behaviors and choices, cf. Raudenbush and Sampson 

(1999).   

 

Economics, in contrast, regards the elements that coTmprise endogenous and 

contextual social interactions as directly affecting the preferences, constraints, and 

beliefs of agents and so treats them as additional determinants to individual 

specific characteristics, ix .   
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There do not exist formal arguments for favoring one approach versus another at 

an abstract level.  

 

At the same time the additivity assumption in both approaches are ad hoc from the 

perspective of economic theory, even if the assumption is ubiquitous in empirical 

practice. 
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For hierarchical models, there has been no virtually attention to the reflection 

problem except Blume and Durlauf (2005).  Here we modify the Blume and Durlauf 

analysis and consider a formulation that closely follows the conceptual logic of 

hierarchical models in that social interactions are entirely subsumed in the 

interactions on parameters.  Formally, this means that individual outcomes obey 

 

 ,i g g g i ik c xω ε= + +   (15) 

 

With individual- and group-specific components obeying 

 

 g g gk k dy Jm= + +   (16) 

 

and 

 g g gc c y m ψ′= + Ψ +   (17) 
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Ψ  is a matrix and ψ  is a vector.  I omit any random terms in (17) and (18) for 

simplicity, although hierarchical models typically include them.   

 

This formulation assumes that the endogenous effect directly affects the individual 

level coefficients and so differs from the Blume and Durlauf example.  Imposing 

rational expectations, the hierarchical model is equivalent to the linear model 

 

 ,i g i g g g i g i ik cx dy Jm y x m xω ψ ε′= + + + + Ψ + +  (18) 
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Hence, the difference between the linear model used in economics and the 

hierarchical structure is the addition of the terms g iy x′Ψ  and g im xψ  by the 

hierarchical model to the original linear in means model.   

 

Thus the hierarchical model does nothing deeper than add the cross products of 

variables in order to allow for nonlinearity.  As such, the approach is far behind the 

econometrics literature on semiparametric methods which allows for much deeper 

forms of nonlinearity.  

 

On the other hand, the use of cross products of variables is common in empirical 

economics. 
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Can this model exhibit the reflection problem?  The self-consistent solution 

expected choice level for the hierarchical model is  

 

 
1
g g g g

g
g

k cx dy y x
m

J xψ
′+ + + Ψ

=
− −

  (19) 

 

Recall that the reflection problem occurred when g gy x= .  If we impose this 

condition in the hierarchical model, (20) becomes 

 

 ( )
1

g g g
g

g

k c d y y y
m

J yψ
′+ + + Ψ

=
− −

  (20) 
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Equation (20) makes clear that the relationship between gm  and the other 

regressors in the hierarchical model is nonlinear.   

 

The presence of g gy y′Ψ  in the numerator and gyψ−  in the denominator ensures 

that linear dependence will not hold, except for hairline cases, so long as there is 

sufficient variation in ix  and gy .   

 

Hierarchical models thus exhibit different identification properties from linear in 

means models because their structure renders the endogenous effect gm  a 

nonlinear function of the contextual interactions gy  (and also a nonlinear function 

of gx  if this variable is distinct from gy ).  

 
U 
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nobserved group effects 
 

One of the major limits to identification of social interactions is the presence of 

unobserved group-level heterogeneity.  To introduce this issue, we modify (1) to 

 

 ,i g i g g g ik cx dy Jmω α ε= + + + + +   (21) 

 

The associated reduced form for (22) is 

 

,
1= .

1 1 1 1i g i g g g i
k J dcx cx y

J J J J
ω α ε+ + + + +

− − − −
 (22) 
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Instrumental variables 
 

One approach to dealing with unobserved group level heterogeneity is the use of 

instrumental variables.   This approach is generally difficult to justify in addressing 

unobserved group characteristics for both the linear in means and other models.   

 

The reason for the difficulty is that gα  is itself undertheorized, in other words, this 

term captures aspects of a group that affect outcomes which the model does not 

explicitly describe.   
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Beyond this, valid instrumental variables require the property that they have been 

excluded from the initial behavioral equation as either individual or contextual 

determinants of outcomes.   

 

It is hard to see how, in typical socioeconomic contexts, such instruments may be 

found, since the instruments must be known on a priori grounds to be uncorrelated 

with both the undertheorized gα  and iε .   
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Social interactions models are typically what Brock and Durlauf (2001) have 

termed openended, which means that their theoretical structure does not naturally 

identify variables to exclude from the equations that describe behavior.  

 

In other words, social interactions theories are openended because the presence 

of a given type of social interaction does not logically preclude the empirical 

relevance of other theories; the econometric analog of this is that social economics 

models do not provide a logical basis for choosing instruments.   

 

This is quite different from rational expectations models, for example, whose logic 

often allows one to express linear combinations of variables as forecast errors, 

which must logically be orthogonal to an agent’s information set; in 

macroeconomics a key example of this is the Euler equation in a stochastic 

optimization model. 
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Some uses of instrumental variables fall under the rubric of quasi-natural 

experiments.  A recent example is Cipollone and Rosolia (2007) which we describe 

in some detail as it illustrates the strengths and weaknesses of quasi-experimental 

data as a source for evidence on social interactions.   

 

Their analysis examines the effects of changes in male high school graduation 

rates on female high school graduation rates using a change in Italy’s compulsory 

military service laws which exempted male students in schools located in areas 

damaged by a 1980 earthquake.   
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Cipollone and Rosolia compare two groups of schools.   

 

The first group of schools are located in towns that experienced relatively little 

earthquake damage (based on official assessments) and yet were included in the 

draft exemption.  

 

 The second group of schools were located in towns that were near the towns 

whose schools comprise the first group; the authors argue that these towns 

suffered similar damage so that their failure to receive an exemption was arbitrary. 

Cipollone and Rosolia find statistically significant higher graduation rates for 

females in the high schools subject to the exemption when compared to females 

in the comparable high schools that were not subject to exemption.   
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One limitation of this type of calculation is that it is difficult to interpret in terms of 

social mechanisms, an issue recognized by the authors.   

 

Regardless of this, the finding itself may be problematic. Compulsory military 

service was previously subject to exemptions for high school graduation. Thus, the 

general exemption changed the composition of males in a school in particular 

ways.  The problem is that the general exception affected the attendance of males 

whose unobservable characteristics made their graduation behavior especially 

sensitive to the policy change relative to the previous regime.   

 

 

 

 

 

 



45 
 

 

Suppose that there is assortative matching on these unobservable characteristics 

in the formation of romantic relationships.   

 

One can reasonably imagine that an associated increase in graduation for females 

occurs because of the preservation of romantic relationships that would have been 

severed by school (and community) withdrawal for military service.   The message 

of this possibility is that the translation of what amount to partial correlations on the 

behavior of one group with the behaviors of another group into causal claims about 

social interactions that can answer policy relevant questions requires careful 

consideration of counterfactuals and the nature of unobservable individual-specific 

heterogeneity. 
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Panel data 

 
A second standard strategy for dealing with unobserved group interactions 

involves the use of panel data to difference the interactions out.  This amounts to 

working with 

 

( ) ( ) ( ), , , , 1 , , 1 , , 1 , , 1 , , 1i g t i g t i t i t g t g t g t g t i t i tc x x d y y J m mω ω ε ε− − − − −− = − + − + − + −   (23) 

 

Recall that our identification Theorem 1 depended on the relationship between gx

, gy  and gm .  Theorem 1 immediately can be applied if one considers the 

requirements of the Theorem as they apply to , , 1g t g tx x −− , , , 1g t g ty y −−  and 

, , 1g t g tm m −= .   
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So long as there is temporal variation in ,g tx  and ,g ty  i.e. the first differences are 

not zero, then the conditions for identification will be the same as in the original 

linear model without gα .  Note that variation in ,g tx  and/or ,g ty  will induce variation 

in ,g tm  over time.  An early example of this strategy is Hoxby (2000) who focuses 

on variation in the percentage of a student´s own ethnic group in a classroom.  

 
 
 
 
 
 
 
 



48 
 

 
Self-selection 

 

It is natural for many social contexts to expect individuals to self-select into groups. 

This is most obvious for the case of residential neighborhoods; models such as 

Bénabou (1993,1996), Durlauf (1996a,b) and Hoff and Sen (2005), for example, 

all link social interactions to neighborhood choice.  In terms of estimation, self-

selection generally means that orthogonality of regressors and errors is violated. 
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Self-selection has typically been addressed using instrumental variables methods.   

 

The use of instrumental variables as a solution to self-selection suffers, in our view, 

from the problem of theory openendedness as was discussed in the context of 

unobserved group effects.   

 

However, unlike the case of unobservable group interactions, self-selection 

involves a specific behavior on the part of the agents under study which can 

provide additional insight into instrument validity.   
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For example, Evans, Oates and Schwab (1992) focus on estimating the effect of 

the percentage of students in a school who are disadvantaged on high school 

dropout and teen fertility rates.  The measure of school level socioeconomic 

disadvantage is instrumented with metropolitan area levels of unemployment, 

college completion and poverty rates and median income. The instruments are 

justified on the grounds that while families may choose schools within a 

metropolitan area, they are unlikely to choose metropolitan areas because of 

schools.  This may be correct as far as it goes, but the relevant question for 

instrument validity is whether the instruments are uncorrelated with iε .  One 

obvious reason why this is true is that drop out and pregnancy decisions will be 

related to labor market opportunities, which by the logic of Evans, Oates and 

Schwab’s choice of the instruments would be defined at the metropolitan and not 

the school level. Durlauf (2004), on the other hand, suggests reasons why the 

instruments may not be valid.     
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In our view, the preferred approach to dealing with self-selection is to treat group 

choice and behavior within a group as a set of joint outcomes, and conduct 

empirical analysis from the perspective of both behaviors.  Unlike the instrumental 

variables approach, this has interesting implications for identification, at least for 

the linear model; Brock and Durlauf (2001), first recognized this possibility and 

studied the case of self-selection between two groups; Brock and Durlauf 

(2002,2006) and Ioannides and Zabel (2008) extended this analysis to an arbitrary 

finite number of groups.  At an intuitive level, this is not surprising.  Self-selection 

represents a behavior on the part of an agent and so should contain information 

about his preferences, which will depend on the social interactions that occur in 

groups over which he is choosing. Unlike the instrumental variable approach, 

modeling self-selection exploits this information rather than treats it as a nuisance.  
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Following Heckman’s original (1979) reasoning, one can think of individuals 

choosing between groups 1,...,g G=  based on an overall individual-specific quality 

measure for each group: 

 

 *
, 1 2 3 , ,i g i g i g i gI x y zγ γ γ ν= + + +   (24) 

 

where ,i gz  denotes those observable characteristics that influence i ’s evaluation 

of group g  but are not direct determinants of iω  and ,i gν  denotes an unobservable 

individual-specific group quality term.  Individual i  chooses the group with the 

highest *
,i gI .  We assume that ,i g∀ , ( ),, , 0i i g i gE x y zε =  and ( ), ,, , 0i g i g i gE x y zν = .    
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From this vantage point, self selection matters for identification because 

 

 ( )1 1 ,1 ,, , , ,...., , , , 0i i i G G i GE x x y z x y z i gε ∈ ≠   (25) 

 

Notice that eq. (25) includes the characteristics of all groups; this conditioning 

reflects the fact that the choice of group g  depends on characteristics of the groups 

that were not chosen in addition to the characteristics of the group that was chosen.   
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Eq. (25) suggests that the linear in means model, under self-selection, should be 

written as 

 

( ), 1 1 ,1 ,, , , ,...., , , ,i g i g g i i i G G i G icx dy Jm E x x y z x y z i gω ε ξ= + + + ∈ +   (26) 

 

where by construction ( )1 1 ,1 ,, , , ,...., , , , 0i i i G G i GE x x y z x y z i gξ ∈ = .  Notice that the 

conditioning in (25) includes the characteristics of all groups in the choice set; this 

is natural since the characteristics of those groups not chosen are informative 

about the errors. 
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This captures Heckman’s (1979) insight that in the presence of self-selection on 

unobservables, the regression residual iε  no longer has a conditional mean of 

zero, yet (25) can be consistently estimated using ordinary least squares if one 

adds a term to the original linear in means model ithat is proportional to the 

conditional expectation  ( )1 1 ,1 ,, , , ,...., , , ,i i i G G i GE x x y z x y z i gε ∈ , prior to estimation.  

Denote this estimate as  

 

 ( )

1 1 ,1 ,, , , ,...., , , ,i i i G G i GE x x y z x y z i gκ ε ∈   (27) 

 

Heckman’s fundamental insight was that one can construct such a term by 

explicitly modeling the choice of group.   
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From this perspective, controlling for self-selection amounts to estimating   

 

( )

, 1 1 ,1 ,, , , ,...., , , ,i g i g g i i i G G i G icx dy Jm E x x y z x y z i gω ρκ ε ξ= + + + ∈ +   (28) 

 

Thus, accounting for self-selection necessitates considering identification for this 

regression. 
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The property of interest for the identification of social interactions is that the 

addition of the term can help facilitate identification.   

 

To see this, consider two possible reasons why agents choose particular groups.   

 

First, agents may choose groups on the basis of the expected average behaviors 

that occur.  For example a family chooses a neighborhood based on its expectation 

of the average test score among students in the school their child will attend.   
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In the extreme case where this is the only neighborhood factor that matters to 

families, the conditional expectation associated with the selection correction will 

be a function of the agent’s characteristics and the expected outcomes in each of 

the neighborhoods, i.e. 

 

( ) ( )1 1 ,1 , 1, , , ,...., , , , , ,...,i i i G G i G i GE x x y z x y z i g x m mε ϖ∈ =   (29) 

 

By the same logic that rendered the partial linear model identified, our equation is 

also identified as gm  cannot, outside of nongeneric cases be linearly dependent 

on a constant term and gy . 
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Second, parents may choose neighborhoods based on the mean incomes of 

families or some measure of the distribution of occupations among neighborhood 

adults.  This can be justified on role model grounds.  If neighborhoods are 

evaluated according to their contextual variables, then (29)   functions as an 

additional individual-specific regressor whose group level average does not 

appear in the model without self-selection.  Hence, following the argument about 

identification in linear in means models that was developed earlier, the presence 

of a regressor with a nonzero coefficient can allow for identification to occur.  This 

route to identification has been successfully used in Ioannides and Zabel (2008) 

to identify social interactions in housing.   
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Binary Choice Models 
 

 

Suppose that agents choose { }1,1iω ∈ −  . Expected payoffs follow 

 

 

 

 

where 

 

( ) ( )( ) ( )
1

1 expi i i i z
z

µ ε ω ε ω− − ≤ =
+ −

 

 

 

 

( ) ( )i i i i g i g i i iEV k cX dY Jmω ω ω ω ω ε ω= + + + +
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It is immediate that 

   

 

( ) ( )
( ) ( )

exp
Pr 1 , ,

exp exp
i g g

i i g
i g g i g g

k cx dy Jm
X Y g

k cx dy Jm k cx dy Jm
ω

+ + +
= =

+ + + + + + +
 (30) 

 

where 
 

( )tanhg i g gm k cx dy Jm= + + +  

  

 

Recall ( ) ( ) ( )
( ) ( )

exp exp
tanh

exp exp
x x

x
x x

− −
=

+ −
.   
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Identification 
 

 

1.  The parameters of the binary choice model are identified. True for multinomial 

choice analogs. 

 

2.  If the error difference obeys any absolutely continuous distribution, the 

distribution function is identified, as are parameters, so long as ,i gX Y  have 

unbounded support. 

 
Intuition: within a group, distribution identified following arguments by Manski.  

Across groups, with sufficient variation, regressors cannot be linearly dependent. 
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Fixed Effects 
 

In binary choice model, suppose that payoff obey 

 

 

If gα ’s are fixed effects, then identification fails without additional assumptions 

 

  

( ) ( )i i i i g i g i g i i iEV k cx dy Jmω ω ω ω ω α ω ε ω= + + + + +
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Partial Identification Under Shape Restrictions on Density of  gα  

 

Unlike the linear model, the binary choice model admists multiple equilibria. 

 

This gives a route to a form of partial identification. Suppose that there are two 

groups, g  and g′ such that g gm m ′<  yet 

 

( ) ( )tanh tanhi g i gk cx dy k cx dy ′+ + > + +  

 

 

How can this be? 
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Two routes: 

 

1. g gα α ′<   

 

Or 

 

2. g  is coordinated at a low average equilibrium compared to g′  
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Pattern Reversals 
 

The possibility of multiple equilibria suggests a form of partial identification.  

 

Perhaps data can reveal that J  is large enough for multiple equilibria. 

 

This can be done under “mild” assumptions on unobservables 

 

  



67 
 

Theorem: Stochastic Dominance 
 

Let 
g gY

F
α

 denote distribution function of gα  Assume that 
g gY

F
α

first order 

stochastically dominates 
g gY

F
α ′ ′

 if g gy y ′> . 

 

Then if  g gy y ′>  and , then 0J >  and large enough to produce multiple equilibria. 

g gm m ′<  
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Theorem 2: Unimodality 
 
Suppose that 

g
dFα  is unimodal. If 0J = , then there exists a vector π  such that 

y mg g
dF

π
 is unimodal. 

 

Heuristics of proof: set dπ = . Impact of contextual effects is monotonic under 

smoothness of expected value of group when equilibrium is unique. 

 

Comment: means are not unimodal under multiple equilibria. Error in literature. 

 

  

 

 


