The Marriage Market, Labor Supply and Education Choice

Human Capital Formation and Family Economics Workshop

P.A. Chiappori, M. Costa Dias, C. Meghir

Columbia University, UCL and IFS, Yale University

Chicago, October 28, 2016

• Two fundamental, Beckerian insights:

- Two fundamental, Beckerian insights:
 - Notion of Human Capital

- Two fundamental, Beckerian insights:
 - Notion of Human Capital
 - Matching as an equilibrium phenomenon:

- Two fundamental, Beckerian insights:
 - Notion of Human Capital
 - Matching as an equilibrium phenomenon:
 - assortative?

- Two fundamental, Beckerian insights:
 - Notion of Human Capital
 - Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations

- Two fundamental, Beckerian insights:
 - Notion of Human Capital
 - Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations
- Matching on human capital: assortative ?
 - \rightarrow not obvious; depends on the nature of marital gains.

- Two fundamental, Beckerian insights:
 - Notion of Human Capital
 - Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations
- Matching on human capital: assortative ?
 - \rightarrow not obvious; depends on the nature of marital gains.
 - Public goods (under TU) tend to generate PAM (however, domestic production may push in the opposite direction, especially if specialization)

- Two fundamental, Beckerian insights:
 - Notion of Human Capital
 - Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations
- Matching on human capital: assortative ?
 - \rightarrow not obvious; depends on the nature of marital gains.
 - Public goods (under TU) tend to generate PAM (however, domestic production may push in the opposite direction, especially if specialization)
 - Risk sharing is still another dimension:

- Two fundamental, Beckerian insights:
 - Notion of Human Capital
 - Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations
- Matching on human capital: assortative ?
 - \rightarrow not obvious; depends on the nature of marital gains.
 - Public goods (under TU) tend to generate PAM (however, domestic production may push in the opposite direction, especially if specialization)
 - Risk sharing is still another dimension:
 - More HC means both higher expected wages and more wage volatility

- Two fundamental, Beckerian insights:
 - Notion of Human Capital
 - Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations
- Matching on human capital: assortative ?
 - \rightarrow not obvious; depends on the nature of marital gains.
 - Public goods (under TU) tend to generate PAM (however, domestic production may push in the opposite direction, especially if specialization)
 - Risk sharing is still another dimension:
 - More HC means both higher expected wages and more wage volatility
 - $\bullet \ \rightarrow$ notion of 'background risk' \ldots

- Two fundamental, Beckerian insights:
 - Notion of Human Capital
 - Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations
- Matching on human capital: assortative ?
 - \rightarrow not obvious; depends on the nature of marital gains.
 - Public goods (under TU) tend to generate PAM (however, domestic production may push in the opposite direction, especially if specialization)
 - Risk sharing is still another dimension:
 - More HC means both higher expected wages and more wage volatility

2 / 20

- $\bullet \ \rightarrow$ notion of 'background risk' \ldots
- ... especially since PAM depends on 'supermodularity'

- Two fundamental, Beckerian insights:
 - Notion of Human Capital
 - Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations
- Matching on human capital: assortative ?
 - \rightarrow not obvious; depends on the nature of marital gains.
 - Public goods (under TU) tend to generate PAM (however, domestic production may push in the opposite direction, especially if specialization)
 - Risk sharing is still another dimension:
 - More HC means both higher expected wages and more wage volatility
 - $\bullet \ \rightarrow$ notion of 'background risk' \ldots
 - ... especially since PAM depends on 'supermodularity'
- This paper: investigates this aspect in an explicit, theory-based model

• Standard LS models:

э

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife's LS conditional on husband's

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife's LS conditional on husband's
 - Collective: joint determination, two utilities plus decision process

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife's LS conditional on husband's
 - Collective: joint determination, two utilities plus decision process
- But in both cases:

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife's LS conditional on husband's
 - Collective: joint determination, two utilities plus decision process
- But in both cases:
 - Human capital is exogenous

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife's LS conditional on husband's
 - Collective: joint determination, two utilities plus decision process
- But in both cases:
 - Human capital is exogenous
 - Identity (and HC) of the spouse exogenous

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife's LS conditional on husband's
 - Collective: joint determination, two utilities plus decision process
- But in both cases:
 - Human capital is exogenous
 - Identity (and HC) of the spouse exogenous
- Here:

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife's LS conditional on husband's
 - Collective: joint determination, two utilities plus decision process
- But in both cases:
 - Human capital is exogenous
 - Identity (and HC) of the spouse exogenous
- Here:
 - Recognize endogeneity of both pre-marital HC investment and choice of a spouse

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife's LS conditional on husband's
 - Collective: joint determination, two utilities plus decision process
- But in both cases:
 - Human capital is exogenous
 - Identity (and HC) of the spouse exogenous
- Here:
 - Recognize endogeneity of both pre-marital HC investment and choice of a spouse
 - In fact, intra-household issues crucial to understand pre-marital investments (CIW, AER 2009)

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife's LS conditional on husband's
 - Collective: joint determination, two utilities plus decision process
- But in both cases:
 - Human capital is exogenous
 - Identity (and HC) of the spouse exogenous
- Here:
 - Recognize endogeneity of both pre-marital HC investment and choice of a spouse
 - In fact, intra-household issues crucial to understand pre-marital investments (CIW, AER 2009)
- Crucial importance in analyzing *long term consequences* of policy reforms: Will they affect matching patterns? Will they affect HC investments?

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife's LS conditional on husband's
 - Collective: joint determination, two utilities plus decision process
- But in both cases:
 - Human capital is exogenous
 - Identity (and HC) of the spouse exogenous
- Here:
 - Recognize endogeneity of both pre-marital HC investment and choice of a spouse
 - In fact, intra-household issues crucial to understand pre-marital investments (CIW, AER 2009)
- Crucial importance in analyzing *long term consequences* of policy reforms: Will they affect matching patterns? Will they affect HC investments?
- This paper: investigates these aspects

• Standard empirical approach: Choo-Siow, CSW

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is *separable*

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is *separable*
 - Bottom line: identification from matching patterns only

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is *separable*
 - Bottom line: identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is *separable*
 - Bottom line: identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)
- Here: we observe:

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is *separable*
 - Bottom line: identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)
- Here: we observe:
 - Matching patterns ...

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is *separable*
 - Bottom line: identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)
- Here: we observe:
 - Matching patterns ...
 - ... and behavior (here labor supply)

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is *separable*
 - Bottom line: identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)
- Here: we observe:
 - Matching patterns ...
 - ... and behavior (here labor supply)
- Basic insight:

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is *separable*
 - Bottom line: identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)
- Here: we observe:
 - Matching patterns ...
 - ... and behavior (here labor supply)
- Basic insight:
 - Labor supply behavior provides information on preferences \rightarrow recover $total \ surplus$

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is *separable*
 - Bottom line: identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)
- Here: we observe:
 - Matching patterns ...
 - ... and behavior (here labor supply)
- Basic insight:
 - Labor supply behavior provides information on preferences \rightarrow recover $total \ surplus$
 - More robust estimates, more general models

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is *separable*
 - Bottom line: identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)
- Here: we observe:
 - Matching patterns ...
 - ... and behavior (here labor supply)
- Basic insight:
 - Labor supply behavior provides information on preferences \rightarrow recover $total \ surplus$
 - More robust estimates, more general models
 - Endogenous education choices explicitly modeled

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is *separable*
 - Bottom line: identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)
- Here: we observe:
 - Matching patterns ...
 - ... and behavior (here labor supply)
- Basic insight:
 - Labor supply behavior provides information on preferences \rightarrow recover $total \ surplus$
 - More robust estimates, more general models
 - Endogenous education choices explicitly modeled
- This paper: estimation of a matching model of this type
• Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: (education, ability) + random dynamics

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: (education, ability) + random dynamics
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: (education, ability) + random dynamics
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: (education, ability) + random dynamics
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: (education, ability) + random dynamics
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good
- Marital gain: twofold

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: (education, ability) + random dynamics
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good
- Marital gain: twofold
 - Public consumption

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: (education, ability) + random dynamics
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good
- Marital gain: twofold
 - Public consumption
 - Risk sharing

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: (education, ability) + random dynamics
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good
- Marital gain: twofold
 - Public consumption
 - Risk sharing
- TU context (despite strictly concave VNM utilities)

Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education

- Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education
- Agents enter the MM with their H; matching takes place; full commitment (no divorce)

- Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education
- Agents enter the MM with their H; matching takes place; full commitment (no divorce)
- Solution Supply $\rightarrow T$ subperiods; at each subperiod:

- Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education
- Agents enter the MM with their H; matching takes place; full commitment (no divorce)
- Solution Supply $\rightarrow T$ subperiods; at each subperiod:
 - Wage shocks are realized

- Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education
- Agents enter the MM with their H; matching takes place; full commitment (no divorce)
- Solution Supply $\rightarrow T$ subperiods; at each subperiod:
 - Wage shocks are realized
 - Agents supply labor, save and consume

- Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education
- Agents enter the MM with their H; matching takes place; full commitment (no divorce)
- Solution Supply $\rightarrow T$ subperiods; at each subperiod:
 - Wage shocks are realized
 - Agents supply labor, save and consume
 - Note that shocks can be permanent ...

- Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education
- Agents enter the MM with their H; matching takes place; full commitment (no divorce)
- Solution Supply $\rightarrow T$ subperiods; at each subperiod:
 - Wage shocks are realized
 - Agents supply labor, save and consume
 - Note that shocks can be permanent ...
 - ... including initial productivity (or HC) shock

Backwards:

• Start with periods 3

3

э

- Start with periods 3
 - Collective, life cycle LS model

- Start with periods 3
 - Collective, life cycle LS model
 - Under $TU \rightarrow$ household utility \rightarrow standard, unitary model of dynamic labor supply

- Start with periods 3
 - Collective, life cycle LS model
 - Under $TU \rightarrow$ household utility \rightarrow standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus at the household level; moreover

- Start with periods 3
 - Collective, life cycle LS model
 - Under $TU \rightarrow$ household utility \rightarrow standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus at the household level; moreover
 - Identifies preferences and joint distribution of education and ability \rightarrow therefore (expected) surplus.

- Start with periods 3
 - Collective, life cycle LS model
 - Under $TU \rightarrow$ household utility \rightarrow standard, unitary model of dynamic labor supply
 - Defines total expected surplus at the household level; moreover
 - Identifies preferences and joint distribution of education and ability \rightarrow therefore (expected) surplus.
 - Intra-household allocation not determined

- Start with periods 3
 - Collective, life cycle LS model
 - Under $TU \rightarrow$ household utility \rightarrow standard, unitary model of dynamic labor supply
 - Defines total expected surplus at the household level; moreover
 - Identifies preferences and joint distribution of education and ability \rightarrow therefore (expected) surplus.
 - Intra-household allocation not determined
- Then period 2:

- Start with periods 3
 - Collective, life cycle LS model
 - Under $TU \rightarrow$ household utility \rightarrow standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus at the household level; moreover
 - Identifies preferences and joint distribution of education and ability \rightarrow therefore (expected) surplus.
 - Intra-household allocation not determined
- Then period 2:
 - Oberve matching patterns (who marries whom by HC, i.e. education/ability)

- Start with periods 3
 - Collective, life cycle LS model
 - Under $TU \rightarrow$ household utility \rightarrow standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus at the household level; moreover
 - Identifies preferences and joint distribution of education and ability \rightarrow therefore (expected) surplus.
 - Intra-household allocation not determined
- Then period 2:
 - Oberve matching patterns (who marries whom by HC, i.e. education/ability)
 - Identify idiosyncratic matching preferences and (future, contingent) intra-household allocation (Pareto weights)

- Start with periods 3
 - Collective, life cycle LS model
 - Under $TU \rightarrow$ household utility \rightarrow standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus at the household level; moreover
 - Identifies preferences and joint distribution of education and ability \rightarrow therefore (expected) surplus.
 - Intra-household allocation not determined
- Then period 2:
 - Oberve matching patterns (who marries whom by HC, i.e. education/ability)
 - Identify idiosyncratic matching preferences and (future, contingent) intra-household allocation (Pareto weights)
 - $\bullet \ \rightarrow$ ultimately, returns to education

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - Under $TU \rightarrow$ household utility \rightarrow standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus at the household level; moreover
 - Identifies preferences and joint distribution of education and ability \rightarrow therefore (expected) surplus.
 - Intra-household allocation not determined
- Then period 2:
 - Oberve matching patterns (who marries whom by HC, i.e. education/ability)
 - Identify idiosyncratic matching preferences and (future, contingent) intra-household allocation (Pareto weights)
 - $\bullet \ \rightarrow$ ultimately, returns to education
- Finally period 1: education decisions

7 / 20

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - Under $TU \rightarrow$ household utility \rightarrow standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus at the household level; moreover
 - Identifies preferences and joint distribution of education and ability \rightarrow therefore (expected) surplus.
 - Intra-household allocation not determined
- Then period 2:
 - Oberve matching patterns (who marries whom by HC, i.e. education/ability)
 - Identify idiosyncratic matching preferences and (future, contingent) intra-household allocation (Pareto weights)
 - $\bullet \ \rightarrow$ ultimately, returns to education
- Finally period 1: education decisions
 - non cooperative game

7 / 20

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - Under $TU \rightarrow$ household utility \rightarrow standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus at the household level; moreover
 - Identifies preferences and joint distribution of education and ability \rightarrow therefore (expected) surplus.
 - Intra-household allocation not determined
- Then period 2:
 - Oberve matching patterns (who marries whom by HC, i.e. education/ability)
 - Identify idiosyncratic matching preferences and (future, contingent) intra-household allocation (Pareto weights)
 - $\bullet \ \rightarrow$ ultimately, returns to education
- Finally period 1: education decisions
 - non cooperative game

 $\bullet \rightarrow$ identifies the distribution of education costs

7 / 20

• Main problem: stage 1 is a non cooperative game

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, *auxilliary game:*

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, *auxilliary game:*
 - Agents draw their ability, education costs and marital preferences; they match on these characteristics, *then* (jointly) invest in education

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, *auxilliary game:*
 - Agents draw their ability, education costs and marital preferences; they match on these characteristics, then (jointly) invest in education
 - 2 Life cycle labor supply $\rightarrow T$ subperiods

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, *auxilliary game:*
 - Agents draw their ability, education costs and marital preferences; they match on these characteristics, then (jointly) invest in education
 - 2 Life cycle labor supply $\rightarrow T$ subperiods
- This is a standard matching game; existence is guaranteed; 'generic uniqueness'; efficiency
- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, *auxilliary game:*
 - Agents draw their ability, education costs and marital preferences; they match on these characteristics, *then* (jointly) invest in education
 2 Life cycle labor supply → T subperiods
- This is a standard matching game; existence is guaranteed; 'generic uniqueness'; efficiency
- Crucial result (NS 2015): The stable matching of the auxilliary game can be implemented as a Nash equilibrium of the initial game

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, *auxilliary game:*

 - 2 Life cycle labor supply $\rightarrow T$ subperiods
- This is a standard matching game; existence is guaranteed; 'generic uniqueness'; efficiency
- Crucial result (NS 2015): The stable matching of the auxilliary game can be implemented as a Nash equilibrium of the initial game
- Consequences:

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, *auxilliary game:*
 - Agents draw their ability, education costs and marital preferences; they match on these characteristics, *then* (jointly) invest in education
 2 Life cycle labor supply → T subperiods
 - This is a standard matching same: evistence is support
- This is a standard matching game; existence is guaranteed; 'generic uniqueness'; efficiency
- Crucial result (NS 2015): The stable matching of the auxilliary game can be implemented as a Nash equilibrium of the initial game
- Consequences:
 - Existence: guaranteed

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, *auxilliary game:*
 - Agents draw their ability, education costs and marital preferences; they match on these characteristics, *then* (jointly) invest in education
 Life cycle lober cymple. T cybraciade
 - 2 Life cycle labor supply $\rightarrow T$ subperiods
- This is a standard matching game; existence is guaranteed; 'generic uniqueness'; efficiency
- Crucial result (NS 2015): The stable matching of the auxilliary game can be implemented as a Nash equilibrium of the initial game
- Consequences:
 - Existence: guaranteed
 - Uniqueness: 'generically unique' efficient equilibrium

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, *auxilliary game:*
 - Agents draw their ability, education costs and marital preferences; they match on these characteristics, *then* (jointly) invest in education
 - 2 Life cycle labor supply $\rightarrow T$ subperiods
- This is a standard matching game; existence is guaranteed; 'generic uniqueness'; efficiency
- Crucial result (NS 2015): The stable matching of the auxilliary game can be implemented as a Nash equilibrium of the initial game
- Consequences:
 - Existence: guaranteed
 - Uniqueness: 'generically unique' efficient equilibrium
 - ... but 'coordination failures' are possible

• Preferences over private consumption (*C*), public consumption (*Q*), leisure (*L_i*); gender specific

$$u_{it} (Q_t, C_{it}, L_{it}) = \ln (C_{it}Q_t + \alpha_{it}L_{it}Q_t) \text{ under BC}$$

$$Y_t + RS_{t-1} = C_t + S_t + w_{1t1}L_{1t} + w_{2t}L_{2t} + pQ_t$$

• Preferences over private consumption (*C*), public consumption (*Q*), leisure (*L_i*); gender specific

$$u_{it}(Q_t, C_{it}, L_{it}) = \ln (C_{it}Q_t + \alpha_{it}L_{it}Q_t) \text{ under BC}$$

$$Y_t + RS_{t-1} = C_t + S_t + w_{1t1}L_{1t} + w_{2t}L_{2t} + pQ_t$$

• Note: GQL (ordinal) + ISHARA \Rightarrow TU: standard, unitary model at the household level

• Preferences over private consumption (*C*), public consumption (*Q*), leisure (*L_i*); gender specific

$$u_{it}(Q_t, C_{it}, L_{it}) = \ln (C_{it}Q_t + \alpha_{it}L_{it}Q_t) \text{ under BC}$$

$$Y_t + RS_{t-1} = C_t + S_t + w_{1t1}L_{1t} + w_{2t}L_{2t} + pQ_t$$

- Note: GQL (ordinal) + ISHARA \Rightarrow TU: standard, unitary model at the household level
- Labor Supply: discrete; preference shocks on the α s

 Preferences over private consumption (C), public consumption (Q), leisure (L_i); gender specific

$$u_{it}(Q_t, C_{it}, L_{it}) = \ln(C_{it}Q_t + \alpha_{it}L_{it}Q_t) \text{ under BC}$$

$$Y_t + RS_{t-1} = C_t + S_t + w_{1t}L_{1t} + w_{2t}L_{2t} + pQ_t$$

- Note: GQL (ordinal) + ISHARA \Rightarrow TU: standard, unitary model at the household level
- Labor Supply: discrete; preference shocks on the α s
- Euler equation, solved numerically

• Preferences over private consumption (*C*), public consumption (*Q*), leisure (*L_i*); gender specific

$$u_{it}(Q_t, C_{it}, L_{it}) = \ln (C_{it}Q_t + \alpha_{it}L_{it}Q_t) \text{ under BC}$$

$$Y_t + RS_{t-1} = C_t + S_t + w_{1t}L_{1t} + w_{2t}L_{2t} + pQ_t$$

- Note: GQL (ordinal) + ISHARA \Rightarrow TU: standard, unitary model at the household level
- Labor Supply: discrete; preference shocks on the α s
- Euler equation, solved numerically
- LS and wage dynamics identify the joint distribution of education and ability

• Preferences over private consumption (*C*), public consumption (*Q*), leisure (*L_i*); gender specific

$$u_{it}(Q_t, C_{it}, L_{it}) = \ln (C_{it}Q_t + \alpha_{it}L_{it}Q_t) \text{ under BC}$$

$$Y_t + RS_{t-1} = C_t + S_t + w_{1t}L_{1t} + w_{2t}L_{2t} + pQ_t$$

- Note: GQL (ordinal) + ISHARA \Rightarrow TU: standard, unitary model at the household level
- Labor Supply: discrete; preference shocks on the α s
- Euler equation, solved numerically
- LS and wage dynamics identify the joint distribution of education and ability
- Expected value functions at initial date (t = 1): $v_i = EV_i$ with

$$e^{v_1} + e^{v_2} = e^{\frac{1-\delta}{1-\delta^T}Y(H_1,H_2)}$$

 $\rightarrow \text{therefore } \mathsf{TU}$

• Background: Choo-Siow, CSW:

• Background: Choo-Siow, CSW:

• Finite levels of HC, H_i , $i \in \{1, ..., N\}$

• Background: Choo-Siow, CSW:

- Finite levels of HC, H_i , $i \in \{1, ..., N\}$
- Woman $i \in I$ draws a vector of preferences $\alpha_i = \left(\alpha_i^0, \alpha_i^1, ..., \alpha_i^N\right)$, man

$$j \in J$$
 draws $\beta_j = \left(\beta_j^0, \beta_j^1, ..., \beta_j^N
ight)$

• Background: Choo-Siow, CSW:

- Finite levels of HC, H_i , $i \in \{1, ..., N\}$
- Woman $i \in I$ draws a vector of preferences $\alpha_i = \left(\alpha_i^0, \alpha_i^1, ..., \alpha_i^N\right)$, man

$$j \in J$$
 draws $eta_j = \left(eta_j^{\mathsf{0}},eta_j^{\mathsf{1}},...,eta_j^{\mathsf{N}}
ight)$

• Surplus derived from the matching of $i \in I$ with $j \in J$:

$$s(i,j) = S(H_I, H_J) + \alpha_i^J + \beta_j^I$$

(plus possibly some deterministic components)

• Background: Choo-Siow, CSW:

- Finite levels of HC, H_i , $i \in \{1, ..., N\}$
- Woman $i \in I$ draws a vector of preferences $\alpha_i = \left(\alpha_i^0, \alpha_i^1, ..., \alpha_i^N\right)$, man

$$j \in J$$
 draws $eta_j = \left(eta_j^{\mathsf{0}},eta_j^{\mathsf{1}},...,eta_j^{\mathsf{N}}
ight)$

• Surplus derived from the matching of $i \in I$ with $j \in J$:

$$s(i,j) = S(H_I, H_J) + \alpha_i^J + \beta_j^I$$

(plus possibly some deterministic components)

• In particular (Graham 2011,13): if supermodularity, AM more frequent than under random matching

• Background: Choo-Siow, CSW:

- Finite levels of HC, H_i , $i \in \{1, ..., N\}$
- Woman $i \in I$ draws a vector of preferences $\alpha_i = \left(\alpha_i^0, \alpha_i^1, ..., \alpha_i^N\right)$, man

$$j \in \mathsf{J}$$
 draws $eta_j = \left(eta_j^{\mathsf{0}},eta_j^{\mathsf{1}},...,eta_j^{\mathsf{N}}
ight)$

• Surplus derived from the matching of $i \in I$ with $j \in J$:

$$s(i,j) = S(H_I, H_J) + \alpha_i^J + \beta_j^I$$

(plus possibly some deterministic components)

- In particular (Graham 2011,13): if supermodularity, AM more frequent than under random matching
- Theorem (CSW 2014): there exists $V_1(H_I, H_J)$ and $V_2(H_I, H_J)$ such that:

$$V_{1}\left(H_{I},H_{J}
ight)+V_{2}\left(H_{I},H_{J}
ight)=S\left(H_{I},H_{J}
ight)$$
 and

• Background: Choo-Siow, CSW:

- Finite levels of HC, H_i , $i \in \{1, ..., N\}$
- Woman $i \in I$ draws a vector of preferences $\alpha_i = (\alpha_i^0, \alpha_i^1, ..., \alpha_i^N)$, man

$$j \in J$$
 draws $eta_j = \left(eta_j^{\mathsf{0}},eta_j^{\mathsf{1}},...,eta_j^{\mathsf{N}}
ight)$

• Surplus derived from the matching of $i \in I$ with $j \in J$:

$$s(i,j) = S(H_I, H_J) + \alpha_i^J + \beta_j^I$$

(plus possibly some deterministic components)

- In particular (Graham 2011,13): if supermodularity, AM more frequent than under random matching
- Theorem (CSW 2014): there exists $V_1(H_I, H_J)$ and $V_2(H_I, H_J)$ such that:

$$V_{1}\left(H_{I},H_{J}
ight)+V_{2}\left(H_{I},H_{J}
ight)=S\left(H_{I},H_{J}
ight)$$
 and

• The utility of *i* is $V_1(H_I, H_J) + \alpha_i^J$

• Background: Choo-Siow, CSW:

- Finite levels of HC, H_i , $i \in \{1, ..., N\}$
- Woman $i \in I$ draws a vector of preferences $\alpha_i = (\alpha_i^0, \alpha_i^1, ..., \alpha_i^N)$, man

$$j \in J$$
 draws $eta_j = \left(eta_j^{\mathsf{0}},eta_j^{\mathsf{1}},...,eta_j^{\mathsf{N}}
ight)$

• Surplus derived from the matching of $i \in I$ with $j \in J$:

$$s(i,j) = S(H_I, H_J) + \alpha_i^J + \beta_j^I$$

(plus possibly some deterministic components)

- In particular (Graham 2011,13): if supermodularity, AM more frequent than under random matching
- Theorem (CSW 2014): there exists $V_1(H_I, H_J)$ and $V_2(H_I, H_J)$ such that:

$$V_{1}\left(H_{I},H_{J}
ight)+V_{2}\left(H_{I},H_{J}
ight)=S\left(H_{I},H_{J}
ight)$$
 and

10 / 20

- The utility of *i* is $V_1(H_I, H_J) + \alpha_i^J$
- The utility of j is $V_2(H_I, H_J) + \beta_i^I$

• In the CS context:

- ∢ ≣ →

-

æ

- In the CS context:
 - i's choice solves

$$\max_{J} V_1 \left(H_I, H_J \right) + \alpha_i^J$$

3

- In the CS context:
 - i's choice solves

$$\max_{J} V_1\left(H_I, H_J\right) + \alpha_i^J$$

• j's choice solves

$$\max_{I} V_2 \left(H_I, H_J \right) + \beta_j^I$$

3

- In the CS context:
 - i's choice solves

$$\max_{J} V_1\left(H_I, H_J\right) + \alpha_i^J$$

• j's choice solves

$$\max_{I} V_2 (H_I, H_J) + \beta_j^I$$

• Therefore discrete choice models:

э

- In the CS context:
 - i's choice solves

$$\max_{J} V_1\left(H_I, H_J\right) + \alpha_i^J$$

• j's choice solves

$$\max_{I} V_2(H_I, H_J) + \beta_j^I$$

- Therefore discrete choice models:
 - $2 \times N$ multilogits (marital choice of each male/female in class I/J)

- In the CS context:
 - i's choice solves

$$\max_{J} V_1 \left(H_I, H_J \right) + \alpha_i^J$$

• j's choice solves

$$\max_{I} V_2 (H_I, H_J) + \beta_j^I$$

- Therefore discrete choice models:
 - $2 \times N$ multilogits (marital choice of each male/female in class I/J)
 - exactly identified in a highly parametric context (extreme values, no heteroskedasticity)

- In the CS context:
 - i's choice solves

$$\max_{J} V_1 \left(H_I, H_J \right) + \alpha_i^J$$

• j's choice solves

$$\max_{I} V_2 \left(H_I, H_J \right) + \beta_j^I$$

- Therefore discrete choice models:
 - $2 \times N$ multilogits (marital choice of each male/female in class I/J)
 - exactly identified in a highly parametric context (extreme values, no heteroskedasticity)
- In our context: same, plus restrictions, since

$$V_1(H_I, H_J) + V_2(H_I, H_J) = S(H_I, H_J)$$

where $S(H_I, H_J)$ can be recovered from labor supply behavior $\rightarrow 2 \times N$ multilogits with N^2 restrictions on the thresholds.

Assume changes affect, say, wage dynamics. Impact? \rightarrow Distinguish ST and LT

• Short term: couples are given; standard impact on:

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...
 - ... including public

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...
 - ... including public
- Long term: matching endogenous

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...
 - ... including public
- Long term: matching endogenous
 - Changes the respective weight of the deterministic and random parts of the surplus

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...
 - ... including public
- Long term: matching endogenous
 - Changes the respective weight of the deterministic and random parts of the surplus
 - Therefore changes the matching patterns ...

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...
 - ... including public
- Long term: matching endogenous
 - Changes the respective weight of the deterministic and random parts of the surplus
 - Therefore changes the matching patterns ...
 - $\bullet \ \ldots$ and the distribution of LS and consumption

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...
 - ... including public
- Long term: matching endogenous
 - Changes the respective weight of the deterministic and random parts of the surplus
 - Therefore changes the matching patterns ...
 - $\bullet \ \ldots$ and the distribution of LS and consumption
- 'Long long' term: returns to education are affected; therefore possible impact on HC acquisition!

• Wage process

$$\begin{array}{lll} \ln w_{it} &=& \ln W(\theta_i) + \delta_1 t + \delta_2 t^2 + \delta_3 t^3 + e_{it} + \epsilon_{it} \\ e_{it} &=& \rho e_{it-1} + \xi_{it} \end{array}$$

Preferences

$$\alpha_{it} = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3 + \eta_i + u_{it}$$

э
$\bullet\,$ Simulated moments; 3 levels of education, 2 levels of ability $\to\,$ 6 levels of HC

э

- $\bullet\,$ Simulated moments; 3 levels of education, 2 levels of ability $\to\,$ 6 levels of HC
- Stepwise procedure:

- Simulated moments; 3 levels of education, 2 levels of ability \rightarrow 6 levels of HC
- Stepwise procedure:
 - Wage stochastic process (endogeneous education \rightarrow control function approach).

- Simulated moments; 3 levels of education, 2 levels of ability \rightarrow 6 levels of HC
- Stepwise procedure:
 - Wage stochastic process (endogeneous education \rightarrow control function approach).
 - Ability and preferences distribution (taking into account endogenous selection into employment)

- Simulated moments; 3 levels of education, 2 levels of ability \rightarrow 6 levels of HC
- Stepwise procedure:
 - Wage stochastic process (endogeneous education \rightarrow control function approach).
 - Ability and preferences distribution (taking into account endogenous selection into employment)
 - $\bullet\,$ Matching probabilities identify Pareto weights $\rightarrow\,$ individual benefits of education

- Simulated moments; 3 levels of education, 2 levels of ability \rightarrow 6 levels of HC
- Stepwise procedure:
 - Wage stochastic process (endogeneous education \rightarrow control function approach).
 - Ability and preferences distribution (taking into account endogenous selection into employment)
 - $\bullet\,$ Matching probabilities identify Pareto weights $\rightarrow\,$ individual benefits of education
 - Education choices

Results: surplus

Data: 18 annual waves (1991 to 2008) of the British Household Panel Survey (BHPS)

Table 4. Economic surplus from marinage									
		Women's ability and education							
Men's educ									
and ability	Sec (L)	HS(L)	Sec (H)	HS(H)	Univ (L)	Univ (H)			
Sec (L)	85.06	148.88	189.26	189.10	197.17	245.39			
HS(L)	82.61	144.33	189.53	185.97	199.87	249.21			
Sec (H)	129.54	210.34	266.84	264.88	299.85	370.86			
Univ (L)	101.45	176.79	241.15	232.27	268.43	338.90			
HS (H)	139.01	220.91	288.21	281.00	326.74	405.43			
Univ (H)	142.96	234.71	317.10	305.31	366.01	460.91			

Table 4: Economic surplus from marriage

Rows and Columns ordered by male and female human capital respectively. L and H signify low and high ability respectively.

• Supermodular at the top of the distribution ... but not everywhere

Table 6: Proportion of singles by level of human capital.

Level of Human Capital	1	2	3	4	5	6
Women	0.11	0.08	0.14	0.39	0.07	0.21
Men	0.22	0.31	0.07	0.20	0.16	0.04

Levels of human capital in increasing order: A. Men 1: Secondary - low ability, 2: High School Low ability, 3: Secondary High ability, 4: University Low ability, 5: High School - High ability, 6: University High ability; B. Women 1: Secondary - low ability, 2: High School-Low ability, 3: Secondary High ability, 4: High School - High ability, 5: University L- Low ability, 6: University High ability.

Table 5: Marital Matching patterns									
	Women's education								
Men's educ	Sec	HS	Univ	Sec HS U					
	Simula	ated Proj	$\operatorname{portions}$	Data	Propor	tions			
	Μ	en's cho	ices						
Sec	0.326	0.068	0.001	0.291	0.094	0.014			
HS	0.158	0.124	0.027	0.156	0.126	0.032			
Univ	0.007	0.048	0.049	0.019	0.044	0.053			
	Simulated Proportions Data Proportions					tions			
	Women's choices								
Sec	0.327	0.070	0.001	0.291	0.094	0.014			
HS	0.159	0.125	0.027	0.156	0.126	0.032			
Univ	0.008	0.049	0.050	0.019	0.044	0.053			

The numbers represent cell proportions.

Chiappori, Costa Dias, Meghir (Columbia Uni Marriage, Labor Supply and Education Chicag

Chicago, October 28, 2016

Results: Sharing rule

Table 8: Sharing rule

	Women's ability and education						
Men's educ and ability	Sec (L)	HS (L)	Sec (H)	HS (H)	Univ (L)	Univ (H)	
Sec (L)	0.833	0.365	0.523	0.164	0.248	0.163	
	(0.261)	(0.114)	(0.148)	(0.080)	(0.073)	(0.040)	
HS(L)	0.931	0.606	0.604	0.377	0.054	0.042	
	(0.335)	(0.254)	(0.212)	(0.152)	(0.024)	(0.021)	
Sec (H)	0.611	0.455	0.452	0.293	0.072	0.087	
	(0.225)	(0.172)	(0.155)	(0.127)	(0.047)	(0.052)	
Univ (L)	0.937	0.856	0.943	0.663	0.440	0.356	
	(0.330)	(0.343)	(0.335)	(0.231)	(0.165)	(0.110)	
HS(H)	0.768	0.495	0.583	0.363	0.226	0.199	
	(0.252)	(0.193)	(0.188)	(0.142)	(0.037)	(0.065)	
Univ (H)	0.695	0.760	0.744	0.617	0.415	0.361	
	(0.330)	(0.285)	(0.262)	(0.213)	(0.136)	(0.121)	

Notes: Male Share of Surplus. Asymptotic standard errors in parentheses computed using the bootstrap. Ordering of cells by male and female human capital respectively. L and H signify low and high ability respectively

Chiappori, Costa Dias, Meghir (Columbia Uni Marriage, Labor Supply and Education Chicago, October 28, 2016

Simulation: decrease in education costs

Table 9: Education distribution								
		Men			women			
		baseline low cost Univ bas				low cost Univ		
	Distribution of education							
Sec	0.450	0.404	0	.542	0.490			
HS	0.400	0.368	0	.331	0.309			
Univ	0.150	0.227	0	.128	0.202			

Table 10: Changes in the matching patterns

	women's education and ability							
Men's educ								
and ability	Sec (L)	HS(L)	Sec (H)	HS(H)	Univ (L)	Univ (H)		
Sec (L)	-0.21	-0.21	-0.32	-0.13	-0.01	-0.01		
HS(L)	-0.23	-0.07	-0.30	-0.06	0.13	0.09		
Sec (H)	-0.73	-0.21	-1.10	-0.12	-0.01	0.00		
Univ (L)	0.00	0.23	-0.02	0.17	0.16	0.23		
HS(H)	-0.21	-0.41	-0.59	-0.32	0.20	0.27		
Univ (H)	0.00	0.53	0.21	0.33	1.31	1.41		

Numbers correspond to changes in the proportion of each cell. Ordering of cells by male and female human capital respectively. L and H signify low and high ability respectively

(日) (同) (三) (三)

э

• General model:

2

∃ ► < ∃ ►</p>

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply

э

General model:

- Joint determination of education, marital patterns and dynamic labor supply
- 'Tractable general equilibrium' perspective

• General model:

- Joint determination of education, marital patterns and dynamic labor supply
- 'Tractable general equilibrium' perspective
- In particular, (expected) marital patterns play a key role for education choices

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - 'Tractable general equilibrium' perspective
 - In particular, (expected) marital patterns play a key role for education choices
- Policy reforms: simulate long term effects

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - 'Tractable general equilibrium' perspective
 - In particular, (expected) marital patterns play a key role for education choices
- Policy reforms: simulate long term effects
- Extensions (future research):

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - 'Tractable general equilibrium' perspective
 - In particular, (expected) marital patterns play a key role for education choices
- Policy reforms: simulate long term effects
- Extensions (future research):
 - Nature of the public good: investment in children's HC

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - 'Tractable general equilibrium' perspective
 - In particular, (expected) marital patterns play a key role for education choices
- Policy reforms: simulate long term effects
- Extensions (future research):
 - Nature of the public good: investment in children's HC
 - Explicit estimation of the production function

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - 'Tractable general equilibrium' perspective
 - In particular, (expected) marital patterns play a key role for education choices
- Policy reforms: simulate long term effects
- Extensions (future research):
 - Nature of the public good: investment in children's HC
 - Explicit estimation of the production function
 - Requires time use data, ...

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - 'Tractable general equilibrium' perspective
 - In particular, (expected) marital patterns play a key role for education choices
- Policy reforms: simulate long term effects
- Extensions (future research):
 - Nature of the public good: investment in children's HC
 - Explicit estimation of the production function
 - Requires time use data, ...
 - Dynamics:

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - 'Tractable general equilibrium' perspective
 - In particular, (expected) marital patterns play a key role for education choices
- Policy reforms: simulate long term effects
- Extensions (future research):
 - Nature of the public good: investment in children's HC
 - Explicit estimation of the production function
 - Requires time use data, ...
 - Dynamics:
 - limited commitment

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - 'Tractable general equilibrium' perspective
 - In particular, (expected) marital patterns play a key role for education choices
- Policy reforms: simulate long term effects
- Extensions (future research):
 - Nature of the public good: investment in children's HC
 - Explicit estimation of the production function
 - Requires time use data, ...
 - Dynamics:
 - limited commitment
 - in particular, divorce