The Evolution of Belief Ambiguity During the Process of High School Choice

Pamela Giustinelli
University of Michigan

Nicola Pavoni
Bocconi University, IFS, CEPR

Human Capital and Inequality Conference, December 2015

Introduction I

- Human capital is fundamental for a wide range of outcomes including skill-mismatch and inequality

Introduction I

- Human capital is fundamental for a wide range of outcomes including skill-mismatch and inequality
- Key stages of the HC accumulation process occur between early childhood and young adulthood

Introduction I

- Human capital is fundamental for a wide range of outcomes including skill-mismatch and inequality
- Key stages of the HC accumulation process occur between early childhood and young adulthood
- Early schooling and career choices are subject to 'uncertainty'

Introduction I

- Human capital is fundamental for a wide range of outcomes including skill-mismatch and inequality
- Key stages of the HC accumulation process occur between early childhood and young adulthood
- Early schooling and career choices are subject to 'uncertainty'
- Expectations are fundamental to schooling decisions

Introduction II

(Rational) decision-theory literature has 4 levels of 'knowledge'

Introduction II

(Rational) decision-theory literature has 4 levels of 'knowledge'
(1) Pure Risk

Introduction II

(Rational) decision-theory literature has 4 levels of 'knowledge'
(1) Pure Risk
(2) 'Simple' Uncertainty

Introduction II

(Rational) decision-theory literature has 4 levels of 'knowledge'
(1) Pure Risk
(2) 'Simple’ Uncertainty
(3) Ambiguous Uncertainty

Introduction II

(Rational) decision-theory literature has 4 levels of 'knowledge'
(1) Pure Risk
(2) 'Simple’ Uncertainty
(3) Ambiguous Uncertainty
(9) Limited Awareness

Introduction II

(Rational) decision-theory literature has 4 levels of 'knowledge'
(1) Pure Risk
(2) 'Simple’ Uncertainty
(3) Ambiguous Uncertainty
(9) Limited Awareness

- Education choice mainly involves the last three levels

Introduction II

(Rational) decision-theory literature has 4 levels of 'knowledge'
(1) Pure Risk
(2) 'Simple’ Uncertainty
(3) Ambiguous Uncertainty
(9) Limited Awareness

- Education choice mainly involves the last three levels
- We study children's belief about the likelihood of obtaining a high school diploma in the regular time

Introduction II

(Rational) decision-theory literature has 4 levels of 'knowledge'
(1) Pure Risk
(2) 'Simple’ Uncertainty
(3) Ambiguous Uncertainty
(9) Limited Awareness

- Education choice mainly involves the last three levels
- We study children's belief about the likelihood of obtaining a high school diploma in the regular time
- We focus on Ambiguity and its evolution during the months before pre-enrolment into high school

State of the Art

- Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review)

State of the Art

- Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review) Stress usefulness of information of non chosen alternatives

State of the Art

- Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review) Stress usefulness of information of non chosen alternatives
- Learning with subjective (point) beliefs and schooling: Stinebrickner \& Stinebrickner (12-14), Wiswall \& Zafar (15)

State of the Art

- Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review) Stress usefulness of information of non chosen alternatives
- Learning with subjective (point) beliefs and schooling: Stinebrickner \& Stinebrickner (12-14), Wiswall \& Zafar (15) We have direct measures of 'confidence' around (point) beliefs

State of the Art

- Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review) Stress usefulness of information of non chosen alternatives
- Learning with subjective (point) beliefs and schooling: Stinebrickner \& Stinebrickner (12-14), Wiswall \& Zafar (15) We have direct measures of 'confidence' around (point) beliefs
- We study beliefs ambiguity updating. Consensus on theory: Marinacci (02) and Epstein \& Schneider (03-07)

State of the Art

- Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review) Stress usefulness of information of non chosen alternatives
- Learning with subjective (point) beliefs and schooling: Stinebrickner \& Stinebrickner (12-14), Wiswall \& Zafar (15) We have direct measures of 'confidence' around (point) beliefs
- We study beliefs ambiguity updating. Consensus on theory: Marinacci (02) and Epstein \& Schneider (03-07)
- (Static) Awareness measures and schooling: Dawes \& Brown (02) and Hoxby \& Avery (12) Scheider et al. (00) and Neild (05)

State of the Art

- Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review) Stress usefulness of information of non chosen alternatives
- Learning with subjective (point) beliefs and schooling: Stinebrickner \& Stinebrickner (12-14), Wiswall \& Zafar (15) We have direct measures of 'confidence' around (point) beliefs
- We study beliefs ambiguity updating. Consensus on theory: Marinacci (02) and Epstein \& Schneider (03-07)
- (Static) Awareness measures and schooling: Dawes \& Brown (02) and Hoxby \& Avery (12) Scheider et al. (00) and Neild (05)
We document the evolution of Awareness

The Study

Study Overview I

- Study: In Vicenza, Italy, between Fall 2011 and Spring 2012
- Population: 8th graders enrolled in any public junior high school of the Vicenza Municipality in Fall of 2011 and parents

Study Overview I

- Study: In Vicenza, Italy, between Fall 2011 and Spring 2012
- Population: 8th graders enrolled in any public junior high school of the Vicenza Municipality in Fall of 2011 and parents
- Timeline of data collection
- Before pre-enrollment, taken as the main decision
- Wave 1: mid October 2011
- Wave 2: mid December 2011
- Wave 3: mid February 2012
- Pre-enrollment deadline: February 20th 2012
- After pre-enrollment
- Wave 4: early April 2012

Study Overview II

- Schools' Sample: 10 out of 11 agreed to participate (≈ 900)
- Families' Sample: 649 students and 619 parents returned a fully or partially completed questionnaire in wave 1 ($\approx 70 \%$)
- Survey Mode: Paper and pencil; 60-75 min to complete; self-administered at home, but with introduction of the study and warm-up expectation question in school for the children

Track	Sub-Track (or Curriculum)
General	Art
General	Humanities
General	Languages
General	Mathematics \& Science
General	Music \& Choral
General	Learning and Social Sciences
Technical	Economic Sector
Technical	Technology Sector
Vocational	Services
Vocational	Industry \& Crafts
Vocational	Professional Training

Our Measures

Eliciting Awareness about Choice Alternatives

- Question: What high school curricula do you know or have you heard the name of? Please mark one.

I know it
I have heard the name only
I have never heard of it

Eliciting Awareness about Choice Alternatives

- Question: What high school curricula do you know or have you heard the name of? Please mark one.

O 1 know it
I have heard the name only
I have never heard of it

- Proposed interpretation:
- 'I have never heard of' = Unawareness about existence of K
- 'I have heard the name only' = Awareness about existence of K , but limited knowledge about characteristics of K
- 'I know' = Awareness about existence of K and refined knowledge about characteristics of K

Children's Awareness in Wave 1

\%	'Know'	'Heard of'	'Never heard of'
Aggregate	42.45	41.11	16.44

Predictors of Children's Awareness in Wave 1

Mean Linear Regression of N of Alternatives Child

Predictors	'Know' + 'Heard of'		'Know'	
female	$\underset{\substack{0.41436)}}{0.4144^{* *}}$	$\underset{(0.1850)}{0.3800^{* *}}$	$\underset{(0.2685)}{0.9285^{* * *}}$	$\begin{gathered} 0.8339^{* * *} \\ (0.2687) \end{gathered}$
foreign born	$\underset{(0.3252)}{-1.3140^{* * *}}$	$\underset{(0.3259)}{-1.2743^{* * *}}$	$-\underset{(0.4754)}{1.1397^{* *}}$	$\underset{(0.4735)}{-1.0306^{* *}}$
lives with both parents	$\underset{(0.3129)}{-0.3106}$	$\underset{(0.3126)}{-0.3029}$	$\begin{aligned} & 0.1951 \\ & (0.4575) \end{aligned}$	$\underset{(0.4541)}{0.2164}$
mom college + degree	$\underset{(0.2955)}{-0.8899^{* * *}}$	$\underset{(0.2951)}{-0.8900 * * *}$	$\underset{(0.4320)}{-0.2833}$	$\underset{(0.4287)}{-0.2837}$
mom has HS degree	$-\underset{(0.2496)}{-0.6302^{* *}}$	$-\underset{(0.2493)}{-0.6364^{* *}}$	$\begin{gathered} -0.2598 \\ (0.3649) \end{gathered}$	$\underset{(0.3622)}{-0.2769}$
has stay-home mom	$\underset{(0.2212)}{-0.3701^{*}}$	$\begin{gathered} -0.3481 \\ (0.2215) \end{gathered}$	$\underset{(0.3235)}{-0.2966}$	$\begin{gathered} -0.2360 \\ (0.3218) \end{gathered}$
has blue-collar dad	$\underset{(0.2190)}{0.0473}$	$\begin{aligned} & 0.0751 \\ & (0.2196) \end{aligned}$	$\begin{aligned} & 0.2426 \\ & (0.3202) \end{aligned}$	$\begin{aligned} & 0.3189 \\ & (0.3190) \end{aligned}$
n of older siblings	$\underset{(0.1251)}{0.1363}$	$\underset{(0.1250)}{0.1403}$	$\underset{(0.1829)}{0.1913}$	$\underset{(0.1816)}{0.2024}$
7th-grade GPA	$\underset{(0.1087)}{0.2214^{* *}}$	$\underbrace{0.1920^{*}}_{(0.1105)}$	$\begin{array}{r} 0.0139 \\ (0.1589) \end{array}$	$\begin{gathered} -0.0666 \\ (0.1605) \end{gathered}$
N alt. discussed/thought	-	$\underset{(0.0633)}{0.0905}$	-	$\underset{(0.0920)}{0.2485^{* * *}}$
constant	$\underset{\substack{8.1575 * * * \\(0.8692)}}{ }$	$\begin{gathered} 8.2341^{* * *} \\ (0.8697) \\ \hline \end{gathered}$	$\begin{gathered} 4.5155^{* * *} \\ \hline(1.2708) \\ \hline \end{gathered}$	$\underset{(1.2634)}{4.7257^{* * *}}$

Eliciting Point Beliefs and Ambiguity

- Question: For each type of school below, what do you think would be the chances between 0 and 100 that you would obtain passing grades or higher in all subjects and would graduate in time, if you were to enroll in it?

Eliciting Point Beliefs and Ambiguity

- Question: For each type of school below, what do you think would be the chances between 0 and 100 that you would obtain passing grades or higher in all subjects and would graduate in time, if you were to enroll in it?

Curriculum	Chances out of $\mathbf{1 0 0}$	How sure are you about your answer?
		OI am sure about my answer (Curriculum name)
	--	I am not sure about my answer MIN chances: MAX chances: Mave no idea about the chances

Eliciting Point Beliefs and Ambiguity

- Question: For each type of school below, what do you think would be the chances between 0 and 100 that you would obtain passing grades or higher in all subjects and would graduate in time, if you were to enroll in it?

Curriculum	Chances out of $\mathbf{1 0 0}$	How sure are you about your answer?
		○I am sure about my answer
(Curriculum name)	--	I am not sure about my answer MIN chances: MAX chances:
		Mave no idea about the chances

- Proposed interpretation:
- 'I have no idea about the chances' = maximal ambiguity
- 'I am unsure about my answer' = positive ambiguity
- 'I am sure about my answer' = absence of ambiguity

Children's Point Belief in Wave 1

Point Probabilities of Passing all Exams								
	$\mathbf{. 1 0 Q}$	$\mathbf{. 2 5 Q}$. $\mathbf{5 0 Q}$	$\mathbf{. 7 5 Q}$	$\mathbf{. 9 0 Q}$	Mean	Std.Dev.	
Gen. Human	0	10	40	70	85	41.78	31.77	
Gen. Lang	1	20	50	80	90	48.73	32.26	
Gen. Math\&Sc	5	20	55	80	94	52.81	32.72	
Gen. ArtMusic	0	20	50	80	90	48.17	32.74	
Gen. SocSc	0	5	20	50	75	49.58	31.06	
Tech. Eco	10	25	55	80	95	52.66	31.20	
Tech. Tech	10	30	60	80	95	54.49	31.58	
Voc. Serv	5	30	60	85	100	55.25	33.07	
Voc. Ind\&Craf	0	20	50	80	100	51.23	34.26	
Voc. Profess	0	20	60	90	100	57.06	35.75	

N in 471-543; missing in 16.33-27.43\%

Mean Linear Regression of Child's Point Belief of Passing Curriculum:

Predictors	Gen Hum	Gen Math	$\begin{gathered} \text { Gen } \\ \text { Lang } \end{gathered}$	Gen Art/Music	Gen Soc Sci	Tech Econ Sect	Tech Tech Sect	Voc Serv	Voc Ind	Voc Prof Train
female	$\underset{(2.7720)}{-0.3904}$	$\begin{gathered} -9.9732^{* * *} \\ (2.4960) \end{gathered}$	$\begin{aligned} & 2.1219 \\ & (2.6728) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.6996 \\ & (3.0062) \end{aligned}$	$\underset{(2.6503)}{-1.4633}$	$\underset{(2.7195)}{-3.8708}$	$\underset{(2.7718)}{-12.609)^{* * *}}$	$\begin{aligned} & 0.6968 \\ & (3.0550) \end{aligned}$	$\underset{(3.0684)}{-0.3646}$	$\underset{(3.2783)}{-0.1461}$
foreign born	$\begin{aligned} & 5.5062 \\ & (4.8489) \end{aligned}$	$\underset{(4.4376)}{-4.1510}$	$\begin{gathered} 10.8993 * * \\ (4.5667) \end{gathered}$	$\begin{aligned} & 6.0772 \\ & (5.1581) \end{aligned}$	$\underset{(4.6443)}{-0.2409}$	$\underset{(4.9311)}{-5.1832}$	-2.0442	$\underset{(5.4390)}{-2.7028}$	$\begin{aligned} & 0.9987 \\ & (5.4535) \end{aligned}$	$\underset{(5.7644)}{-5.5562}$
lives with both parents	$\begin{aligned} & 0.3020 \\ & (4.6332) \end{aligned}$	$\begin{aligned} & 0.9220 \\ & (4.2318) \end{aligned}$	$\begin{aligned} & 2.4491 \\ & (4.3869) \end{aligned}$	$\begin{aligned} & 3.2232 \\ & (4.8635) \end{aligned}$	$\begin{gathered} -3.1317 \\ (4.4464) \end{gathered}$	$\begin{aligned} & 3.4697 \\ & (4.6611) \end{aligned}$	$\underset{(4.7026)}{5.4771}$	$\underset{(5.1645)}{-0.4306}$	$\begin{aligned} & 7.0435 \\ & (5.2192) \end{aligned}$	$\underset{(5.5113)}{2.8902}$
mom has college+ degree	$\begin{array}{r} 2.5239 \\ (4.4053) \end{array}$	$\underset{(4.0281)}{1.7202}$	$\begin{aligned} & 5.9158 \\ & (4.1667) \end{aligned}$	$\begin{aligned} & 5.0108 \\ & (4.5835) \end{aligned}$	$\underset{(4.1841)}{4.4773}$	$\begin{aligned} & 5.0789 \\ & (4.4138) \end{aligned}$	$\begin{aligned} & 2.9847 \\ & (4.5043) \end{aligned}$	$\begin{array}{r} 5.2585 \\ (4.9789) \\ \hline \end{array}$	$\begin{array}{r} 2.6368 \\ (4.9811) \end{array}$	$\begin{gathered} -3.3793 \\ (5.2213) \end{gathered}$
mom has HS degree	$\underset{(3.7006)}{-0.0399}$	$\begin{aligned} & 3.6821 \\ & (3.3834) \end{aligned}$	$\begin{array}{r} 3.6437 \\ (3.4934) \\ \hline \end{array}$	$\underset{(3.9223)}{5.5602}$	$\begin{aligned} & 3.7593 \\ & (3.5274) \end{aligned}$	$\underset{(3.7227)}{4.8878}$	$\begin{aligned} & 4.0710 \\ & (3.7532) \end{aligned}$	${ }_{\left(4.6281^{*}\right.}$	$\underset{(4.1982)}{6.4758}$	$\begin{aligned} & 3.6273 \\ & (4.3967) \end{aligned}$
has stay-home mom	$\underset{(3.2693)}{-2.0579}$	$\underset{(2.9982)}{-4.3130}$	$\begin{gathered} 8.2376^{* *} \\ (3.0819) \\ \hline \end{gathered}$	$\begin{aligned} & 4.5865 \\ & (3.4898) \end{aligned}$	$\begin{aligned} & 0.3915 \\ & (3.1306) \end{aligned}$	$\begin{aligned} & 2.0443 \\ & (3.2838) \end{aligned}$	$\begin{aligned} & 1.0697 \\ & (3.3220) \end{aligned}$	$\underset{(3.6509)}{0.1923}$	${ }_{(3.6848)}^{1.2572}$	$\begin{aligned} & 2.5813 \\ & (3.9093) \end{aligned}$
has blue-collar dad	$\underset{(3.2341)}{-4.8475}$	$\underset{(3.0023)}{-2.0761}$	-5.2819^{*}	$\begin{aligned} & 0.5268 \\ & (3.3815) \end{aligned}$	$\underset{(3.1054)}{-4.7257}$	$\begin{gathered} -3.2384 \\ (3.2552) \end{gathered}$	$\begin{array}{r} 0.7741 \\ (3.3108) \\ \hline \end{array}$	$\begin{aligned} & 1.9136 \\ & (3.6303) \end{aligned}$	$\underset{(3.6653)}{-0.2506}$	$\begin{aligned} & 4.2690 \\ & (3.8758) \end{aligned}$
n of older siblings	$\underset{(1.8564)}{-0.3560}$	$\underset{(1.6922)}{-0.3763}$	-1.4926	$\underset{(1.9566)}{-0.8994}$	$\begin{aligned} & 0.3057 \\ & (1.7771) \end{aligned}$	$\begin{aligned} & 0.9013 \\ & (1.8520) \end{aligned}$	$\underbrace{3.633)^{*}}_{(1.8733)}$	$\begin{aligned} & 1.2780 \\ & (2.0637) \end{aligned}$	$\underset{(2.0823)}{1.6541}$	$\begin{aligned} & 2.3228 \\ & (2.2013) \end{aligned}$
7th-grade GPA/grade	$\begin{gathered} 13.7428^{* * *} \\ (1.6712) \end{gathered}$	$\begin{gathered} 12.4881^{* * *} \\ (1.5810) \end{gathered}$	$\begin{gathered} 12.8561 * * * \\ (15432) \end{gathered}$	$\begin{gathered} 8.8692^{* * *} \\ (1.4753) \\ \hline \end{gathered}$	$\begin{gathered} 13.2541^{* * *} \\ (1.5504) \\ \hline \end{gathered}$	$\begin{gathered} 11.0582^{* * *} \\ (1.6120) \end{gathered}$	$\underset{\substack{(1.6284)}}{10.9407 * *}$	$\begin{gathered} 7.8185^{* * *} \\ (18317) \end{gathered}$	$\underset{(1.8264)}{11.3989^{* * *}}$	$\underset{(1.9683)}{10.3459 * *}$
curr. thought on own or discussed before wave 1	$14.1747^{* * *}$	$\underset{(2.9284)}{21.8164^{* *+}}$	$\underset{(3.0714)}{18.6188^{* * *}}$	14.1613^{*} (3.8090)	$15.2164^{* * * *}$	$\begin{gathered} 10.3676 * * * \\ (4.0068) \end{gathered}$	$\begin{gathered} 10.3791^{* * *} \\ (3.4990) \end{gathered}$	${\underset{(4.9127)}{14.4721 * *})}^{2}$	$\begin{aligned} & 6.8933 \\ & (8.3690) \end{aligned}$	$\underset{(7.7627)}{10.3133}$
knows curriculum	$\underset{(7.9463)}{1.2068}$	$\underset{(8.5375)}{-0.2764}$	$\begin{aligned} & 8.5411 \\ & (8.0118) \end{aligned}$	$\begin{gathered} 16.6096^{* * *} \\ (4.2777) \end{gathered}$	$\underset{(4.0534)}{10.1415}$	$\begin{aligned} & 8.3477 \\ & (4.2908) \end{aligned}$	$\underset{(4.4875)}{14.7241}$	$9.0740^{* *}$	$\begin{gathered} 8.6139^{*} \\ (4.5848) \end{gathered}$	$\begin{gathered} 11.9797^{* * *} \\ (4.5194) \end{gathered}$
heard of curriculum	$\underset{(8.0366)}{2.4045}$	$\underset{(8.8967)}{-5.0082}$	$\begin{aligned} & 3.1398 \\ & (8.1342) \end{aligned}$	$\begin{aligned} & 1.3654 \\ & (3.8084) \end{aligned}$	$\begin{aligned} & 2.8047 \\ & (3.8904) \end{aligned}$	$\begin{aligned} & 0.1502 \\ & (4.1670) \end{aligned}$	$\begin{aligned} & 6.8932 \\ & (4.4494) \end{aligned}$	$\begin{gathered} 11.0887^{* * *} \\ (3.8583) \end{gathered}$		$\begin{gathered} 9.0545^{* *} \\ (3.9126) \end{gathered}$
constant	$\underset{(14.3755)}{-64.5426^{* * *}}$	$\underset{(14.4937)}{-43.1459^{* * *}}$	$\underset{(14.0502)}{-66.3020^{* * *}}$	$\underset{(14.1514)}{-49.8205 * *}$	$\underset{(12.4914)}{-59.3635^{* * *}}$	$\underset{(13.4042)}{-38.1659^{* * *}}$	$\underset{(14.8461)}{20.8819}$	$\underset{(13.6348)}{-40.1682^{* * *}}$	$\underset{(14.8796)}{-46.6537 * *}$	$\underset{(15.6970)}{-35.1262^{* *}}$

Children's Ambiguity in Wave 1

\%	'Sure'	'Unsure'	'No Idea of'
Aggregate	75.5	14.0	10.5

Predictors of Ambiguity in Wave 1: Poisson Regression

Predictors	'No Idea'+'Unsure'		'No Idea'	
female	$\underset{(0.0696)}{-0.0178}$	$\begin{aligned} & 0.0040 \\ & (0.0701) \end{aligned}$	$\underset{(0.0941)}{0.2684^{* * *}}$	$\underset{(0.0946)}{0.2938^{* * *}}$
foreign born	${ }_{(0.1138)}^{0.2109^{*}}$	$\underbrace{0.1396^{*}}_{(0.1164)}$	$\begin{aligned} & 0.0699 \\ & (0.1525) \end{aligned}$	$\underset{(0.1557)}{-0.0191}$
lives with both parents	$\underset{(0.1063)}{0.2215^{* *}}$	$\underset{(0.1063)}{0.2019}$	$\underset{(0.1356)}{0.3207^{* *}}$	${\underset{(0.1354)}{0.2996 * *}}^{(2)}$
mom college + degree	$\begin{aligned} & 0.0560 \\ & (0.1138) \end{aligned}$	$\begin{aligned} & 0.0049 \\ & (0.1152) \end{aligned}$	${ }_{(0.1421)}^{0.0235}$	$\underset{(0.1441)}{-0.0386}$
mom has HS degree	$\underset{(0.0984)}{0.1336}$	$\underset{(0.0994)}{0.0938}$	$-\underset{(0.1230)}{0.1113}$	$-(0.1247)$
has stay-home mom	$\underset{(0.0876)}{-0.2081^{* *}}$	$\underset{(0.0878)}{-0.2311^{* * *}}$	$\begin{gathered} -0.0522 \\ (0.1128) \end{gathered}$	${ }_{(0.1131)}^{-0.0795}$
has blue-collar dad	$\underset{(0.0839)}{-0.0801}$	$\begin{gathered} -0.0769 \\ (0.0839) \end{gathered}$	$\begin{gathered} -0.0969 \\ (0.1102) \end{gathered}$	$\begin{gathered} -0.0909 \\ (0.1102) \end{gathered}$
n of older siblings	$\underset{(0.0468)}{0.0175}$	$\begin{aligned} & 0.026 \\ & (0.0466) \end{aligned}$	$\underset{(0.0619)}{-0.024}$	$\underset{(0.0614)}{0.0073}$
7th-grade GPA	$\underbrace{0.0692}_{(0.0412)}$	$\underbrace{0.0792^{*}}_{(0.0412)}$	$\begin{array}{r} -0.0248 \\ (0.0552) \end{array}$	$\begin{array}{r} -0.0108 \\ (0.0552) \end{array}$
N alt. discussed/thought	$\underset{(0.0245)}{-0.0433^{*}}$	$\underset{(0.0246)}{-0.0375}$	$\underset{(0.0372)}{-0.1683^{* * *}}$	$-0.1608^{* * *}(0.0371)$
N alt. aware of	-	$\underset{(0.0176)}{-0.0557^{* * *}}$		${\underset{(0.0231)}{-0.0712^{* * *}}}^{2}$
constant	$\begin{aligned} & 0.2160 \\ & (0.3274) \\ & \hline \end{aligned}$	$\begin{gathered} 0.6770^{*} \\ (0.3547) \\ \hline \end{gathered}$	$\begin{aligned} & 0.5279 \\ & (0.4316) \end{aligned}$	$\begin{gathered} 1.1075^{* *} \\ \hline \end{gathered}$

Conceptual Framework

Subjective Beliefs and Ambiguity

1. Consider the following two bets

Subjective Beliefs and Ambiguity

1. Consider the following two bets

Bet C: Bet on the flip of a coin (you have in your pocket): If T you gain $\$ 100$

Subjective Beliefs and Ambiguity

1. Consider the following two bets

Bet C: Bet on the flip of a coin (you have in your pocket): If T you gain $\$ 100$
Bet H: Bet on a two horses (A \& B) race (you watch on TV): If horse A wins you get $\$ 100$

Subjective Beliefs and Ambiguity

1. Consider the following two bets

Bet C: Bet on the flip of a coin (you have in your pocket): If T you gain $\$ 100$
Bet H: Bet on a two horses (A \& B) race (you watch on TV): If horse A wins you get $\$ 100$
Christmas Present: Which one you prefer?

Subjective Beliefs and Ambiguity

1. Consider the following two bets

Bet C: Bet on the flip of a coin (you have in your pocket): If T you gain $\$ 100$
Bet H: Bet on a two horses (A \& B) race (you watch on TV): If horse A wins you get $\$ 100$
Christmas Present: Which one you prefer?
2. Consider now the following two bets

Subjective Beliefs and Ambiguity

1. Consider the following two bets

Bet C: Bet on the flip of a coin (you have in your pocket): If T you gain $\$ 100$
Bet H: Bet on a two horses (A \& B) race (you watch on TV): If horse A wins you get $\$ 100$
Christmas Present: Which one you prefer?
2. Consider now the following two bets

Bet C: Bet on the coin flip (again, it is yours): If T you gain $\$ 100$

Subjective Beliefs and Ambiguity

1. Consider the following two bets

Bet C: Bet on the flip of a coin (you have in your pocket): If T you gain $\$ 100$
Bet H: Bet on a two horses (A \& B) race (you watch on TV): If horse A wins you get $\$ 100$ Christmas Present: Which one you prefer?
2. Consider now the following two bets

Bet C: Bet on the coin flip (again, it is yours): If T you gain $\$ 100$
Bet H : Bet on the horse race (same as above): If horse B wins you get $\$ 100$

Subjective Beliefs and Ambiguity

1. Consider the following two bets

Bet C: Bet on the flip of a coin (you have in your pocket): If T you gain $\$ 100$
Bet H: Bet on a two horses (A \& B) race (you watch on TV): If horse A wins you get $\$ 100$

Christmas Present: Which one you prefer?
2. Consider now the following two bets

Bet C: Bet on the coin flip (again, it is yours): If T you gain $\$ 100$
Bet H : Bet on the horse race (same as above): If horse B wins you get $\$ 100$
Which one you prefer now?

Subjective Beliefs and Ambiguity

1. Consider the following two bets

Bet C: Bet on the flip of a coin (you have in your pocket): If T you gain $\$ 100$
Bet H: Bet on a two horses (A \& B) race (you watch on TV): If horse A wins you get $\$ 100$
Christmas Present: Which one you prefer?
2. Consider now the following two bets

Bet C: Bet on the coin flip (again, it is yours): If T you gain $\$ 100$
Bet H: Bet on the horse race (same as above): If horse B wins you get $\$ 100$
Which one you prefer now?
In experiments people often choose bet C in both cases $1 . \& 2$.

Subjective Beliefs

- (Finite) set of possible states of nature: Ω

Subjective Beliefs

- (Finite) set of possible states of nature: Ω
- A 'probability model' is a distribution m over Ω

Subjective Beliefs

- (Finite) set of possible states of nature: Ω
- A 'probability model' is a distribution m over Ω
- Two types of states $\Omega=\Omega_{1} \times \Omega_{2}$

Subjective Beliefs

- (Finite) set of possible states of nature: Ω
- A 'probability model' is a distribution m over Ω
- Two types of states $\Omega=\Omega_{1} \times \Omega_{2}$

Schooling-related states $\omega_{1}=\left(\omega_{1}^{1}, \ldots, \omega_{1}^{k}, \ldots, \omega_{1}^{N}\right), \omega_{1}^{k} \in\{0,1\}$

Subjective Beliefs

- (Finite) set of possible states of nature: Ω
- A 'probability model' is a distribution m over Ω
- Two types of states $\Omega=\Omega_{1} \times \Omega_{2}$

Schooling-related states $\omega_{1}=\left(\omega_{1}^{1}, \ldots, \omega_{1}^{k}, \ldots, \omega_{1}^{N}\right), \omega_{1}^{k} \in\{0,1\}$
$\omega_{1}^{k}=1$ means the children passes all exams of curriculum k

Subjective Beliefs

- (Finite) set of possible states of nature: Ω
- A 'probability model' is a distribution m over Ω
- Two types of states $\Omega=\Omega_{1} \times \Omega_{2}$

Schooling-related states $\omega_{1}=\left(\omega_{1}^{1}, \ldots, \omega_{1}^{k}, \ldots, \omega_{1}^{N}\right), \omega_{1}^{k} \in\{0,1\}$ $\omega_{1}^{k}=1$ means the children passes all exams of curriculum k

- Choosing curriculum k makes state ω_{1}^{k} relevant for payoffs

Subjective Beliefs

- (Finite) set of possible states of nature: Ω
- A 'probability model' is a distribution m over Ω
- Two types of states $\Omega=\Omega_{1} \times \Omega_{2}$

Schooling-related states $\omega_{1}=\left(\omega_{1}^{1}, \ldots, \omega_{1}^{k}, \ldots, \omega_{1}^{N}\right), \omega_{1}^{k} \in\{0,1\}$ $\omega_{1}^{k}=1$ means the children passes all exams of curriculum k

- Choosing curriculum k makes state ω_{1}^{k} relevant for payoffs
- Let $C^{k}:=\left\{\omega \in \Omega: \omega_{1}^{k}=1\right\}$

Prior probability: $\quad \pi_{0}^{k}:=m\left(C^{k}\right)$.

Evolution of Beliefs

- Events prior to enrollment are in Ω_{2} (informative signals)

Evolution of Beliefs

- Events prior to enrollment are in Ω_{2} (informative signals)
- School faculty and programs have chosen/designed $\mathcal{T} \subset \Omega$

Evolution of Beliefs

- Events prior to enrollment are in Ω_{2} (informative signals)
- School faculty and programs have chosen/designed $\mathcal{T} \subset \Omega$
- Learning target:

$$
\pi^{k}(\mathcal{T}):=\frac{m\left(C^{k} \cap \mathcal{T}\right)}{m(\mathcal{T})}=m\left(C^{k} \mid \mathcal{T}\right) .
$$

Evolution of Beliefs

- Events prior to enrollment are in Ω_{2} (informative signals)
- School faculty and programs have chosen/designed $\mathcal{T} \subset \Omega$
- Learning target:

$$
\pi^{k}(\mathcal{T}):=\frac{m\left(C^{k} \cap \mathcal{T}\right)}{m(\mathcal{T})}=m\left(C^{k} \mid \mathcal{T}\right) .
$$

- In 'wave' $t=1,2,3$ child i gets information $\mathcal{I}_{t}^{i} \subset \Omega$

Evolution of Beliefs

- Events prior to enrollment are in Ω_{2} (informative signals)
- School faculty and programs have chosen/designed $\mathcal{T} \subset \Omega$
- Learning target:

$$
\pi^{k}(\mathcal{T}):=\frac{m\left(C^{k} \cap \mathcal{T}\right)}{m(\mathcal{T})}=m\left(C^{k} \mid \mathcal{T}\right)
$$

- In 'wave' $t=1,2,3$ child i gets information $\mathcal{I}_{t}^{i} \subset \Omega$
- Child i posterior belief

$$
\pi_{t}^{k}\left(\mathcal{I}_{t}^{i}\right)=m\left(C^{k} \mid \mathcal{I}_{t}^{i}\right) .
$$

Evolution of Beliefs

- Events prior to enrollment are in Ω_{2} (informative signals)
- School faculty and programs have chosen/designed $\mathcal{T} \subset \Omega$
- Learning target:

$$
\pi^{k}(\mathcal{T}):=\frac{m\left(C^{k} \cap \mathcal{T}\right)}{m(\mathcal{T})}=m\left(C^{k} \mid \mathcal{T}\right)
$$

- In 'wave' $t=1,2,3$ child i gets information $\mathcal{I}_{t}^{i} \subset \Omega$
- Child i posterior belief

$$
\pi_{t}^{k}\left(\mathcal{I}_{t}^{i}\right)=m\left(C^{k} \mid \mathcal{I}_{t}^{i}\right) .
$$

- Learning assumption: for all $i, \mathcal{T} \subset \mathcal{I}_{3}^{i} \subset \mathcal{I}_{2}^{i} \subset \mathcal{I}_{1}^{i}$

Ambiguity

- The children holds a set M of 'probability models'

Ambiguity

- The children holds a set M of 'probability models'
- Recall C^{k}, now for each model $m \in M$ we have a prior $\pi_{0}^{k, m}$

Ambiguity

- The children holds a set M of 'probability models'
- Recall C^{k}, now for each model $m \in M$ we have a prior $\pi_{0}^{k, m}$
- Useful objects are: the max, the min and the range:

$$
\bar{\pi}_{0}^{k}:=\max _{m \in M} \pi_{0}^{k, m}, \quad \underline{\pi}_{0}^{k}:=\min _{m \in M} \pi_{0}^{k, m}, \quad \text { and } \quad R_{0}^{k}:=\bar{\pi}_{0}^{k}-\underline{\pi}_{0}^{k}
$$

Ambiguity

- The children holds a set M of 'probability models'
- Recall C^{k}, now for each model $m \in M$ we have a prior $\pi_{0}^{k, m}$
- Useful objects are: the max, the min and the range:

$$
\bar{\pi}_{0}^{k}:=\max _{m \in M} \pi_{0}^{k, m}, \quad \underline{\pi}_{0}^{k}:=\min _{m \in M} \pi_{0}^{k, m}, \quad \text { and } \quad R_{0}^{k}:=\bar{\pi}_{0}^{k}-\underline{\pi}_{0}^{k} .
$$

- R_{0}^{k} is a measure of 'model uncertainty' or ambiguity

Ambiguity

- The children holds a set M of 'probability models'
- Recall C^{k}, now for each model $m \in M$ we have a prior $\pi_{0}^{k, m}$
- Useful objects are: the max, the min and the range:

$$
\bar{\pi}_{0}^{k}:=\max _{m \in M} \pi_{0}^{k, m}, \quad \underline{\pi}_{0}^{k}:=\min _{m \in M} \pi_{0}^{k, m}, \quad \text { and } \quad R_{0}^{k}:=\bar{\pi}_{0}^{k}-\underline{\pi}_{0}^{k}
$$

- R_{0}^{k} is a measure of 'model uncertainty' or ambiguity
- Note that it is an individual measure

Learning under Ambiguity? As usual.

- If we want to keep time consistency, we need Bayesian updating model-by-model (Epstein and Schneider, 2003):
for each \mathcal{I}_{t}, and $m \in M, \quad \pi_{t}^{k, m}\left(\mathcal{I}_{t}\right)=m\left(C^{k} \mid \mathcal{I}_{t}\right)$.

Learning under Ambiguity? As usual.

- If we want to keep time consistency, we need Bayesian updating model-by-model (Epstein and Schneider, 2003):

$$
\text { for each } \mathcal{I}_{t}, \text { and } m \in M, \quad \pi_{t}^{k, m}\left(\mathcal{I}_{t}\right)=m\left(C^{k} \mid \mathcal{I}_{t}\right) .
$$

- And then again $\bar{\pi}_{t}^{k}, \underline{\pi}_{t}^{k}$, and R_{t}^{k}

Learning under Ambiguity? As usual.

- If we want to keep time consistency, we need Bayesian updating model-by-model (Epstein and Schneider, 2003):
for each \mathcal{I}_{t}, and $m \in M, \quad \pi_{t}^{k, m}\left(\mathcal{I}_{t}\right)=m\left(C^{k} \mid \mathcal{I}_{t}\right)$.
- And then again $\bar{\pi}_{t}^{k}, \underline{\underline{t}}_{t}^{k}$, and R_{t}^{k}
- Learning assumption: there is some event $\mathcal{I}_{M} \subset \mathcal{T}$ such that

$$
m\left(\cdot \mid \mathcal{I}_{M}\right)=m^{\prime}\left(\cdot \mid \mathcal{I}_{M}\right) \quad \text { for all } m, m^{\prime} \in M
$$

Learning under Ambiguity? As usual.

- If we want to keep time consistency, we need Bayesian updating model-by-model (Epstein and Schneider, 2003):
for each \mathcal{I}_{t}, and $m \in M, \quad \pi_{t}^{k, m}\left(\mathcal{I}_{t}\right)=m\left(C^{k} \mid \mathcal{I}_{t}\right)$.
- And then again $\bar{\pi}_{t}^{k}, \underline{\pi}_{t}^{k}$, and R_{t}^{k}
- Learning assumption: there is some event $\mathcal{I}_{M} \subset \mathcal{T}$ such that

$$
\begin{aligned}
& m\left(\cdot \mid \mathcal{I}_{M}\right)=m^{\prime}\left(\cdot \mid \mathcal{I}_{M}\right) \text { for all } m, m^{\prime} \in M . \\
& \Rightarrow R^{k}\left(\mathcal{I}_{M}\right)=0 \forall k
\end{aligned}
$$

Learning under Ambiguity? As usual.

- If we want to keep time consistency, we need Bayesian updating model-by-model (Epstein and Schneider, 2003):
for each \mathcal{I}_{t}, and $m \in M, \quad \pi_{t}^{k, m}\left(\mathcal{I}_{t}\right)=m\left(C^{k} \mid \mathcal{I}_{t}\right)$.
- And then again $\bar{\pi}_{t}^{k}, \underline{\underline{I}}_{t}^{k}$, and R_{t}^{k}
- Learning assumption: there is some event $\mathcal{I}_{M} \subset \mathcal{T}$ such that

$$
m\left(\cdot \mid \mathcal{I}_{M}\right)=m^{\prime}\left(\cdot \mid \mathcal{I}_{M}\right) \quad \text { for all } m, m^{\prime} \in M .
$$

$\Rightarrow R^{k}\left(\mathcal{I}_{M}\right)=0 \forall k$
\Rightarrow With enough information ambiguity disappears.

(Un)Awareness? Do not worry.

- If child does not know a curriculum exists, he simply ignores it (he does not know that he does not know it,)
- What if the child discovers a new curriculum, say j ?
- Karni and Vierø (2013-2015) tell us:
- The new π_{t}^{j} is of course to be determined
- Old π_{t}^{k} for $k \neq j$ are as when the child did not know j existed
- Allows to not worry about limited awareness for beliefs

Evolution in Awareness

Children's Awareness in Wave 1

	'Know'	'Heard of'	'Never heard of'
Aggregate	42.45	41.11	16.44
Gen, Art	51.56	44.24	4.21
Gen, Humanities	59.81	35.67	4.52
Gen, Languages	66.04	29.13	4.83
Gen, Math \& Science	73.21	22.59	4.21
Gen, Music \& Choral	31	44.70	24.30
Gen, Soc Sciences	35.36	46.42	18.22
Tech, Economic Sector	35.98	47.51	16.51
Tech, Technology Sector	42.68	43.61	13.71
Voc, Services	28.66	47.20	24.14
Voc, Industry \& Crafts	17.60	46.11	36.29
Voc, Prof Training	25.08	45.02	29.91

Children's Awareness in Wave 3

	'Know'	'Heard of'	'Never heard of'
Aggregate	61.54	32.95	5.51
Gen, Art	70.13	28.10	1.77
Gen, Humanities	77.43	21.02	1.55
Gen, Languages	78.54	20.35	1.11
Gen, Math \& Science	84.73	13.50	1.77
Gen, Music \& Choral	47.79	45.13	7.08
Gen, Soc Sciences	62.39	33.63	3.98
Tech, Economic Sector	55.75	39.16	5.09
Tech, Technology Sector	60.84	34.51	4.65
Voc, Services	49.34	40.71	9.96
Voc, Industry \& Crafts	39.82	47.35	12.83
Voc, Prof Training	50.22	38.94	10.84

Transitions in Awareness I: Wave 1 to Wave 3

UNCONDITIONAL

	Know	Heard	NoHeard	N
	Know			
Heard	0.86	$\mathbf{0 . 1 3}$	$\mathbf{0 . 0 1}$	1333
	0.47	0.48	$\mathbf{0 . 0 5}$	1194
NoHear	0.33	0.52	0.15	443

Children who responded to both W1 \& W3

Transitions on Awareness II: Wave 1 to Wave 2

Ranked Bottom W1

	Know	Heard	oHea	χ^{2}	Know	Know	Heard	NoHeard	
Know	0.79	0.20	0.01	(***)		0.97	0.03	0.00	267
Heard	0.40	0.55	0.06	${ }^{(* * *)}$	Heard	0.72	0.22	0.06	49
NHear	0.24	0.52	0.24		NHear	0.50	0.38	0.12	16

Children who responded to both W1 \& W2

Evolution in Ambiguity

Children's Ambiguity in Wave 1

	'Sure'	'Unsure'	'No Idea'
Aggregate	76.44	$\mathbf{1 3 . 1 0}$	$\mathbf{1 0 . 4 7}$
Gen., Humanities	76.2	14.97	8.82
Gen., Languages	79.84	13.44	6.72
Gen., Math\&Science	76.74	17.11	6.15
Gen., Art or Music	77.13	15.16	7.71
Gen., Social Sciences	74.32	16.49	9.19
Tech., Economic Sec.	75	16.85	8.15
Tech., Techn. Sec.	77.38	12.53	10.08
Voc., Services	73.7	10.41	15.89
Voc., Ind.\&Crafts	77.62	6.91	15.47
Prof. Develop. Train.	76.39	6.67	16.94

Children's Ambiguity in Wave 3

	'Sure'	'Unsure'	'No Idea'
Aggregate	80.96	5.72	13.32
Gen., Humanities	87.22	5.4	7.39
Gen., Languages	87.32	5.92	6.76
Gen., Math\&Science	85.43	6.57	8
Gen., Art or Music	85.31	5.65	9.04
Gen., Social Sciences	81.48	7.41	11.11
Tech., Economic Sec.	80.17	7.08	12.75
Tech., Techn. Sec.	76.82	6.42	16.76
Voc., Services	74.93	4.84	20.23
Voc., Ind.\&Crafts	75.07	3.97	20.96
Prof. Develop. Train.	75.85	3.98	20.17

Transitions in Ambiguity I: Wave 1 to Wave 3

UNCONDITIONAL

	Sure	Unsure	Noldea	N
	0.86	$\mathbf{0 . 0 2}$	$\mathbf{0 . 1 2}$	1790
Sure	0.17	$\mathbf{0 . 1 9}$	247	
	0.64	0.17	0.46	287
	No Idea	0.51	0.03	

Children who responded to both W1 \& W3

Ambiguity Transitions II: Wave 1 to Wave 2

Ranked Bottom W1

Ranked First W1

	Sure	Unsure	Noldea	χ^{2}
	0.84	$\mathbf{0 . 0 2}$	$\mathbf{0 . 1 4}$	$\left({ }^{* * *)}\right.$
Sure	0.8			
Unsure	0.67	0.17	$\mathbf{0 . 1 6}$	
Noldea	0.55	0.05	0.40	

Sure	Sure	Unsure	Noldea	N
	0.92	0.02	0.06	248
Unsure	0.68	0.22	0.10	40
Noldea	1.00	0.00	0.00	5

Children who responded to both W1 \& W2

Ambiguity Transitions III: Wave 1 to Wave 3

UNCONDITIONAL

	Sure	Unsure	Noldea	χ^{2}
	0.86	$\mathbf{0 . 0 2}$	$\mathbf{0 . 1 2}$	$\left({ }^{* * *}\right)$
Sure	0.8			
Unsure	0.71	0.15	$\mathbf{0 . 1 4}$	
Noldea	0.58	0.04	0.39	

	Sure	Unsure	Noldea	N
	0.93	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 1}$	149
Sure	Unsure	0.73	0.22	$\mathbf{0 . 0 5}$
	22			
Noldea	0.43	0.14	0.43	$\mathbf{7}$

Children who responded to both W1 \& W3

Evolution in Beliefs and Ranges

Point Beliefs and Ranges

- (Raw) dispersion of beliefs is tricky as approx. to knowledge/information in the sample

Point Beliefs and Ranges

- (Raw) dispersion of beliefs is tricky as approx. to knowledge/information in the sample
- Reported Ranges:

$$
R_{t}^{i}=\bar{\pi}_{t}^{i}-\underline{\pi}_{t}^{i}+\Delta \mu_{t}^{i}
$$

are individual measure of knowledge/information

Point Beliefs and Ranges

- (Raw) dispersion of beliefs is tricky as approx. to knowledge/information in the sample
- Reported Ranges:

$$
R_{t}^{i}=\bar{\pi}_{t}^{i}-\underline{\pi}_{t}^{i}+\Delta \mu_{t}^{i}
$$

are individual measure of knowledge/information

- We can hence study their average evolution across alternatives

Evolution of the Point Beliefs

Evolution of the Ambiguity Ranges I: Alternatives

Evolution of the Ambiguity Ranges II: Ranking

Discussion I

- We focused on an outcome close to theory interpretation

Discussion I

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity

Discussion I

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)

Discussion I

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)
- Systematic Increase in ambiguity for certain alternatives

Discussion I

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)
- Systematic Increase in ambiguity for certain alternatives
- Can be rationalised with selective use of 'limited memory'

Discussion I

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)
- Systematic Increase in ambiguity for certain alternatives
- Can be rationalised with selective use of 'limited memory'
- If we insists on this view, important implications for policy

Discussion I

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)
- Systematic Increase in ambiguity for certain alternatives
- Can be rationalised with selective use of 'limited memory'
- If we insists on this view, important implications for policy
- In any case, evidence relevant for estimation in choice models

Discussion I

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)
- Systematic Increase in ambiguity for certain alternatives
- Can be rationalised with selective use of 'limited memory'
- If we insists on this view, important implications for policy
- In any case, evidence relevant for estimation in choice models
- Care must be taken in use of data for unchosen alternatives

Discussion I

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)
- Systematic Increase in ambiguity for certain alternatives
- Can be rationalised with selective use of 'limited memory'
- If we insists on this view, important implications for policy
- In any case, evidence relevant for estimation in choice models
- Care must be taken in use of data for unchosen alternatives
- Incorporate into choice, process for learning or bias generation

Discussion II

- The work very much in progress

Discussion II

- The work very much in progress
- Ranges promising measures for (aggregate) information

Discussion II

- The work very much in progress
- Ranges promising measures for (aggregate) information
- Similar measures - easier to elicit - can be investigated

Discussion II

- The work very much in progress
- Ranges promising measures for (aggregate) information
- Similar measures - easier to elicit - can be investigated
- Future: see how beliefs react to grades (observable shocks)

Sample Characteristics I	Children W1 Sample $(N=649)$	Children W1\&W3 Sample $(N=410)$
Child's gender $\%$ female	$\begin{aligned} & 46.53 \\ & 53.47 \end{aligned}$	$\begin{aligned} & 43.17 \\ & 56.83 \end{aligned}$
Child's place of birth \% Italy	86.36	88.02
Child's age mean std. dev.	$\begin{gathered} 13.0929 \\ 0.4249 \end{gathered}$	$\begin{gathered} 13.0732 \\ 0.4072 \end{gathered}$
Child's age vs. school grade \% regular (born in 1998) \% ahead (born after 1998) \% behind (born before 1998)	$\begin{gathered} 83.9 \\ 3.87 \\ 12.23 \end{gathered}$	$\begin{gathered} 85.12 \\ 4.15 \\ 10.73 \\ \hline \end{gathered}$
Child's GPA (out of 10) mean std. dev.	$\begin{aligned} & 7.6541 \\ & 0.9663 \end{aligned}$	$\begin{aligned} & 7.7405 \\ & 0.9719 \end{aligned}$
Parent/s' child lives with \% both parents \% one parent \% none	$\begin{gathered} 87.84 \\ 11.66 \\ 0.51 \end{gathered}$	$\begin{gathered} 88.2 \\ 11.44 \\ 0.35 \end{gathered}$
Number of older siblings mean std. dev.	$\begin{aligned} & 0.6248 \\ & 0.7636 \end{aligned}$	$\begin{array}{r} 0.5594 \\ 0.6966 \\ \hline \end{array}$

Sample Characteristics II	Children W1 Sample $(\mathrm{N}=649)$	Child W1\&W3 Sample $(\mathrm{N}=410)$
Mother's country of birth \% Italy	87.79	82.7
Father's place of birth \% Italy	81.16	83.03
Mother's school degree elementary or less junior high school HS diploma (includes 3-yrs vocational) college degree or higher	$\begin{gathered} 2.37 \\ 20.14 \\ 50.08 \\ 27.41 \end{gathered}$	$\begin{gathered} 1.85 \\ 18.78 \\ 52.12 \\ 27.25 \\ \hline \end{gathered}$
Father's school degree elementary or less junior high school HS diploma (includes 3-yrs vocational) college degree or higher	$\begin{gathered} 1.94 \\ 21.3 \\ 50.35 \\ 26.41 \end{gathered}$	$\begin{gathered} 1.62 \\ 22.16 \\ 50.81 \\ 25.41 \end{gathered}$
Mother's working status $\left.\begin{array}{r}\text { full-time } \\ \text { part-time }\end{array}\right\}$	39.43 37.58 22.90	41.04 36.36 22.60
	$\begin{gathered} 92.06 \\ 4.32 \\ 3.63 \end{gathered}$	91.84 4.21 3.95

Awareness in W1: Poisson Regression of N of Alternatives Child is Aware of

Predictors	'Know' + 'Heard of'		'Know'	
female	$\begin{aligned} & \hline 0.0443 \\ & (0.0327) \end{aligned}$	$\begin{aligned} & \hline 0.0408 \\ & (0.0330) \end{aligned}$	$\underset{(0.0456)}{0.1901^{* * *}}$	$\begin{aligned} & 0.1725^{* * *} \\ & (0.0459) \end{aligned}$
foreign born	$\underset{(0.0616)}{-0.1501^{* *}}$	$\underset{(0.0618)}{-0.1458^{* *}}$	$\underset{(0.0879)}{-0.2538^{* * *}}$	$\underset{(0.0882)}{-0.2310^{* * *}}$
lives with both parents	$\underset{(0.0566)}{-0.0335}$	$\underset{(0.0566)}{-0.0326}$	$\underset{(0.0754)}{0.0393}$	$\begin{aligned} & 0.0449 \\ & (0.0755) \end{aligned}$
mom college + degree	$\underset{(0.0521)}{-0.0941^{*}}$	$\underset{(0.0521)}{-0.0941^{*}}$	$\underset{(0.0720)}{-0.0572}$	$\underset{(0.0721)}{-0.0575}$
mom has HS degree	$\underset{(0.0437)}{-0.0660}$	$\underset{(0.0437)}{-0.0667}$	$\underset{(0.0605)}{-0.0518}$	$\underset{(0.0606)}{-0.0557}$
has stay-home mom	$\underset{(0.0396)}{-0.0397}$	$\underset{(0.0397)}{-0.0374}$	$\underset{(0.0551)}{-0.0611}$	$\underset{(0.0553)}{-0.0484}$
has blue-collar dad	$\underset{(0.0390)}{0.0057}$	$\underset{(0.0392)}{0.0085}$	${ }_{(0.0535)}^{0.0503}$	$\underset{(0.0537)}{0.0650}$
n of older siblings	$\underset{(0.0222)}{0.0145}$	$\underset{(0.0222)}{0.0149}$	$\underset{(0.0305)}{0.0389}$	$\underset{(0.0304)}{0.0413}$
7th-grade GPA	${ }_{(0.0193)}^{0.0236}$	$\underset{(0.0197)}{0.0205}$	${ }_{(0.0267)}^{0.0035}$	$\underset{(0.0271)}{-0.0124}$
N alt. discussed/thought	-	$\underset{(0.0111)}{0.0094}$	-	$\underset{(0.0149)}{0.0484^{* * *}}$
constant	$\underset{(0.8692)}{2.1055^{* * *}}$	$\underset{(0.1552)}{2.1140^{* * *}}$	$\begin{gathered} 1.4985^{* * *} \\ \hline \end{gathered}$	$\begin{gathered} 1.5387_{(1.2137)}^{* * *} \\ \hline \end{gathered}$

Awareness in W3: Poisson Regression of N of Alternatives Child is Aware of

Predictors	'Know' + 'Heard of'		'Know'	
female	$\begin{gathered} -0.0057 \\ (0.0468) \end{gathered}$	$\begin{gathered} -0.0067 \\ (0.0467) \end{gathered}$	$\begin{aligned} & 0.0529 \\ & (0.0577) \end{aligned}$	$\begin{aligned} & 0.0536 \\ & (0.0577) \end{aligned}$
foreign born	$\begin{gathered} -0.0633 \\ (0.0863) \end{gathered}$	$\begin{gathered} -0.0501 \\ (0.0867) \end{gathered}$	$\begin{gathered} -0.1102 \\ (0.1066) \end{gathered}$	$\underset{(0.1074)}{-0.0751}$
lives with both parents	$\underset{(0.0815)}{-0.0207}$	$\underset{(0.0817)}{-0.0111}$	$\underset{(0.1014)}{-0.0440}$	$\begin{gathered} -0.0048 \\ (0.1023) \end{gathered}$
mom college + degree	$\underset{(0.0766)}{-0.0350}$	$\underset{(0.0784)}{-0.0092}$	$\underset{(0.0950)}{0.1127}$	$\underset{(0.0957)}{0.2037 * *}$
mom has HS degree	$\underset{(0.0650)}{-0.0334}$	$\underset{(0.0656)}{-0.0198}$	$\underset{(0.0807)}{0.0541}$	$\underset{(0.0807)}{0.0935}$
has stay-home mom	$\underset{(0.0543)}{-0.0033}$	$\underset{(0.0544)}{-0.0010}$	$\underset{(0.0661)}{0.1345^{* *}}$	$\begin{aligned} & 0.1091 \\ & (0.0664) \end{aligned}$
has blue-collar dad	$\underset{(0.058)}{-0.0376}$	$\underset{(0.0586)}{-0.0348}$	$\begin{array}{r} -0.0227 \\ (0.0717) \end{array}$	$\underset{(0.0719)}{-0.0728}$
n of older siblings	$\left(\begin{array}{l} 0.0099 \\ (0.0317) \end{array}\right.$	$\begin{aligned} & 0.0103 \\ & (0.0317) \end{aligned}$	$\underset{(0.0399)}{-0.0809^{* *}}$	$\begin{gathered} -0.0507 \\ (0.0408) \end{gathered}$
7th-grade GPA	$\underset{(0.0267)}{-0.0052}$	$\underset{(0.0268)}{-0.0074}$	$\underset{(0.0330)}{-0.0967^{* * *}}$	$\underset{(0.0332)}{-0.0769^{* *}}$
N alt. discussed/thought in W1	$\underset{(0.0151)}{0.0013}$	$\begin{gathered} -0.0021 \\ (0.0153) \end{gathered}$	$\underset{(0.0181)}{0.0404^{* *}}$	$\underset{(0.0187)}{0.0083}$
N alt. aware/knows in W1	-	$\begin{aligned} & 0.0196 \\ & (0.0130) \end{aligned}$	-	$\underset{(0.0103)}{0.0877^{* * *}}$
constant	$\underset{(0.2113)}{2.4403^{* * *}}$	$\underset{(0.2429)}{2.2611^{* * *}}$	$\begin{aligned} & 2.5634 \\ & (0.2598) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.9441 \\ & (0.2748) \end{aligned}$

Predictors of Ambiguity in Wave 3: Poisson Regression

Predictors	'No Idea'+'Unsure'		'No Idea'	
female	$\underset{(0.1066)}{0.3881^{* * *}}$	$\underset{(0.1073)}{0.3897^{* * *}}$	$\underset{(0.1192)}{0.4246^{* * *}}$	$\underset{(0.1200)}{0.4085^{* * *}}$
foreign born	$\underset{(0.1621)}{0.3712^{* * *}}$	$\underset{(0.1664)}{0.2420}$	$0_{(0.1930)}^{0.3447^{*}}$	$\underset{(0.1965)}{0.2352}$
lives with both parents	$\underset{(0.1517)}{0.3509^{* *}}$	$\underbrace{0.2717^{*}}_{(0.1538)}$	$\underset{(0.1728)}{0.4586^{* * *}}$	$\underset{(0.1745)}{0.3995^{* *}}$
mom college + degree	$-\underset{(0.1582)}{-0.7517^{* *}}$	$\underset{(0.1624)}{-0.9077^{* * *}}$	$-{\underset{(0.1726)}{1.0723^{* * *}}}^{(2)}$	$-{\underset{(0.1789)}{ }}^{-1.2621^{* * *}}$
mom has HS degree	$\underset{(0.1285)}{-0.4574^{* * *}}$	$\underset{(0.1311)}{-0.5435^{* * *}}$	$\underset{(0.1374)}{-0.7847^{* * *}}$	$\underset{(0.1420)}{-0.9048^{* * *}}$
has stay-home mom	$-\underset{(0.1215)}{-0.3120^{* * *}}$	$-0.3239^{* * *}$	$\begin{gathered} -0.2153 \\ (0.1329) \end{gathered}$	$\begin{gathered} -0.2295^{*} \\ (0.1328) \end{gathered}$
has blue-collar dad	$-\underset{(0.1295)}{0.2636^{* *}}$	$\underset{(0.1321)}{-0.3150^{* *}}$	$-\underset{(0.1586)}{-0.7061^{* * *}}$	$\underset{(0.1613)}{-0.7555^{* * *}}$
n of older siblings	$\underset{(0.0670)}{0.0795^{* *}}$	$\underset{(0.0666)}{0.0777}$	$\underset{(0.0802)}{-0.0596}$	$\underset{(0.0792)}{-0.0538}$
7th-grade GPA	$\begin{aligned} & 0.0916 \\ & (0.0573) \end{aligned}$	$\frac{0.0993^{*}}{(0.0564)}$	$\begin{aligned} & 0.1010 \\ & (0.0658) \end{aligned}$	$\underbrace{0.1238^{*}}_{(0.0647)}$
N alt. discussed/thought	$-\underset{(0.0363)}{-0.0912^{* *}}$	$\underset{(0.0363)}{-0.0682^{*}}$	$\underset{(0.0472)}{-0.2503^{* * *}}$	$-\underset{(0.0468)}{-0.2218^{* * *}}$
N alt. aware of	-	$\underset{(0.0254)}{-0.1222^{* * *}}$	-	$\underset{(0.0288)}{-0.1340^{* * *}}$
constant	$\begin{aligned} & 0.4760 \\ & (0.4527) \\ & \hline \end{aligned}$	$\underset{(0.4991)}{1.6219^{* * *}}$	$\begin{array}{r} 0.7520 \\ (0.5169) \\ \hline \end{array}$	$\begin{gathered} 1.9055^{* * *} \\ (0.5556) \\ \hline \end{gathered}$

