

The Evolution of Belief Ambiguity During the Process of High School Choice

Pamela Giustinelli University of Michigan Nicola Pavoni Bocconi University, IFS, CEPR

Human Capital and Inequality Conference, December 2015

Giustinelli & Pavoni

• Human capital is fundamental for a wide range of outcomes including skill-mismatch and inequality

- Human capital is fundamental for a wide range of outcomes including skill-mismatch and inequality
- Key stages of the HC accumulation process occur between early childhood and young adulthood

3

イロト 不得 トイヨト イヨト

- Human capital is fundamental for a wide range of outcomes including skill-mismatch and inequality
- Key stages of the HC accumulation process occur between early childhood and young adulthood
- Early schooling and career choices are subject to 'uncertainty'

イロト 不得 トイヨト イヨト

- Human capital is fundamental for a wide range of outcomes including skill-mismatch and inequality
- Key stages of the HC accumulation process occur between early childhood and young adulthood
- Early schooling and career choices are subject to 'uncertainty'
- Expectations are fundamental to schooling decisions

(日) (同) (三) (三) (三)

Introduction

The

Results

Discussion

Introduction II

(Rational) decision-theory literature has 4 levels of 'knowledge'

Giustinelli & Pavoni

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

The

Discussion

Introduction II

(Rational) decision-theory literature has 4 levels of 'knowledge'

O Pure Risk

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●

(Rational) decision-theory literature has 4 levels of 'knowledge'

- O Pure Risk
- (2) 'Simple' Uncertainty

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●

(Rational) decision-theory literature has 4 levels of 'knowledge'

- O Pure Risk
- Simple' Uncertainty
- Ambiguous Uncertainty

(日) (四) (王) (王) (王)

(Rational) decision-theory literature has 4 levels of 'knowledge'

- Pure Risk
- Simple' Uncertainty
- Ambiguous Uncertainty
- 4 Limited Awareness

Introduction II

(Rational) decision-theory literature has 4 levels of 'knowledge'

- O Pure Risk
- Simple' Uncertainty
- Ambiguous Uncertainty
- 4 Limited Awareness
- Education choice mainly involves the last three levels

(Rational) decision-theory literature has 4 levels of 'knowledge'

- Pure Risk
- Simple' Uncertainty
- Ambiguous Uncertainty
- 4 Limited Awareness
- Education choice mainly involves the last three levels
- We study children's belief about the likelihood of obtaining a high school diploma in the regular time

(Rational) decision-theory literature has 4 levels of 'knowledge'

- O Pure Risk
- Simple' Uncertainty
- Ambiguous Uncertainty
- 4 Limited Awareness
- Education choice mainly involves the last three levels
- We study children's belief about the likelihood of obtaining a high school diploma in the regular time
- We focus on Ambiguity and its evolution during the months before pre-enrolment into high school

Giustinelli & Pavoni

Evolution of Beliefs Ambiguity

イロト 不得下 イヨト イヨト 二日

State of the Art

• Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

イロト 不得 トイヨト イヨト ニヨー

State of the Art

 Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review)
 Stress usefulness of information of non chosen alternatives

イロト 不得 トイヨト イヨト 二日

- Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review)
 Stress usefulness of information of non chosen alternatives
- Learning with subjective (point) beliefs and schooling: Stinebrickner & Stinebrickner (12-14), Wiswall & Zafar (15)

イロト 不得 トイヨト イヨト 二日

- Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review)
 Stress usefulness of information of non chosen alternatives
- Learning with subjective (point) beliefs and schooling: Stinebrickner & Stinebrickner (12-14), Wiswall & Zafar (15) We have direct measures of 'confidence' around (point) beliefs

- Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review)
 Stress usefulness of information of non chosen alternatives
- Learning with subjective (point) beliefs and schooling: Stinebrickner & Stinebrickner (12-14), Wiswall & Zafar (15) We have direct measures of 'confidence' around (point) beliefs
- We study beliefs ambiguity updating. Consensus on theory: Marinacci (02) and Epstein & Schneider (03-07)

イロト 不得 トイヨト イヨト 二日

- Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review)
 Stress usefulness of information of non chosen alternatives
- Learning with subjective (point) beliefs and schooling: Stinebrickner & Stinebrickner (12-14), Wiswall & Zafar (15) We have direct measures of 'confidence' around (point) beliefs
- We study beliefs ambiguity updating. Consensus on theory: Marinacci (02) and Epstein & Schneider (03-07)
- (Static) Awareness measures and schooling: Dawes & Brown (02) and Hoxby & Avery (12) Scheider et al. (00) and Neild (05)

State of the Art

- Eliciting subjective beliefs and schooling: A growing literature (e.g., see Giustinelli and Manski (2015) for a review)
 Stress usefulness of information of non chosen alternatives
- Learning with subjective (point) beliefs and schooling: Stinebrickner & Stinebrickner (12-14), Wiswall & Zafar (15) We have direct measures of 'confidence' around (point) beliefs
- We study beliefs ambiguity updating. Consensus on theory: Marinacci (02) and Epstein & Schneider (03-07)
- (Static) Awareness measures and schooling: Dawes & Brown (02) and Hoxby & Avery (12) Scheider et al. (00) and Neild (05)

We document the evolution of Awareness

Giustinelli & Pavoni

Introduction

The Study

Measures

Theory

Results

Discussion

The Study

Giustinelli & Pavoni

- Study: In Vicenza, Italy, between Fall 2011 and Spring 2012
- **Population:** 8th graders enrolled in any public junior high school of the Vicenza Municipality in Fall of 2011 and parents

3

イロト 不得 トイヨト イヨト

Introduction	The Study	Measures	Theory	Results	Discussion
		Study Ove	erview I		

- Study: In Vicenza, Italy, between Fall 2011 and Spring 2012
- **Population:** 8th graders enrolled in any public junior high school of the Vicenza Municipality in Fall of 2011 and parents

• Timeline of data collection

- Before pre-enrollment, taken as the main decision
 - Wave 1: mid October 2011
 - Wave 2: mid December 2011
 - Wave 3: mid February 2012
- Pre-enrollment deadline: February 20th 2012
- After pre-enrollment
 - Wave 4: early April 2012

- Schools' Sample: 10 out of 11 agreed to participate (\approx 900)
- Families' Sample: 649 students and 619 parents returned a fully or partially completed questionnaire in wave 1 (\approx 70%)
- Survey Mode: Paper and pencil; 60-75 min to complete; self-administered at home, but with introduction of the study and warm-up expectation question in school for the children

イロト 不得 トイヨト イヨト 二日

Introduction

The Study

Measures

Th

Discussion

Track	Sub-Track (or Curriculum)
General	Art
General	Humanities
General	Languages
General	Mathematics & Science
General	Music & Choral
General	Learning and Social Sciences
Technical	Economic Sector
Technical	Technology Sector
Vocational	Services
Vocational	Industry & Crafts
Vocational	Professional Training

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction

The Study

Measures

Theory

Results

Discussion

Our Measures

Giustinelli & Pavoni

Introduction	The Study	Measures	Theory	Results	Discussion

Eliciting Awareness about Choice Alternatives

- **Question:** What high school curricula do you know or have you heard the name of? Please mark one.
 - 🔵 l know it
 - I have heard the name only
 - \bigcirc I have never heard of it

イロト 不得下 イヨト イヨト 二日

Eliciting Awareness about Choice Alternatives

- **Question:** What high school curricula do you know or have you heard the name of? Please mark one.
 - 🔵 l know it
 - I have heard the name only
 - I have never heard of it
- Proposed interpretation:
 - 'I have never heard of' = Unawareness about existence of K
 - 'I have heard the name only' = Awareness about existence of K, but *limited knowledge about characteristics* of K
 - 'I know' = Awareness about existence of K and refined knowledge about characteristics of K

Giustinelli & Pavoni

イロト 不得下 イヨト イヨト 二日

Introduction	The Study	Measures	Theory	Results	Discussion
	Children	's Awarene	ess in Wa	ve 1	

vvarciicoo

%	'Know'	'Heard of'	'Never heard of'
Aggregate	42.45	41.11	16.44

Predictors of Children's Awareness in Wave 1

Mean Linear Regression of N of Alternatives Child

Predictors	'Know' +	'Heard of'	'Kn	ow'
female	0.4144**	0.3800**	0.9285^{***}	0.8339***
foreign born	-1.3140^{***} (0.3252)	-1.2743^{***} (0.3259)	-1.1397^{**} (0.4754)	-1.0306^{**} (0.4735)
lives with both parents	-0.3106 (0.3129)	-0.3029 (0.3126)	0.1951 (0.4575)	0.2164 (0.4541)
mom college+ degree	-0.8899*** (0.2955)	-0.8900^{***} (0.2951)	-0.2833 (0.4320)	-0.2837 (0.4287)
mom has HS degree	-0.6302^{**} (0.2496)	-0.6364^{**} (0.2493)	-0.2598 (0.3649)	-0.2769 (0.3622)
has stay-home mom	-0.3701^{*}	-0.3481 (0.2215)	-0.2966	-0.2360 (0.3218)
has blue-collar dad	0.0473	0.0751 (0.2196)	0.2426	0.3189
n of older siblings	0.1363 (0.1251)	0.1403 (0.1250)	0.1913 (0.1829)	0.2024 (0.1816)
7th-grade GPA	0.2214 ^{**} (0.1087)	0.1920* (0.1105)	0.0139 (0.1589)	-0.0666 (0.1605)
N alt. discussed/thought	_	0.0905 (0.0633)	—	0.2485 ^{***} (0.0920)
constant	8.1575*** (0.8692)	$8.2341^{***}_{(0.8697)}$	4.5155 ^{***} (1.2708)	4.7257*** (1.2634)

Giustinelli & Pavoni

イロト 不得下 イヨト イヨト 二日

Eliciting Point Beliefs and Ambiguity

• Question: For each type of school below, what do you think would be the chances between 0 and 100 that you would obtain passing grades or higher in all subjects and would graduate in time, if you were to enroll in it?

イロト 不得下 イヨト イヨト 二日

Eliciting Point Beliefs and Ambiguity

• Question: For each type of school below, what do you think would be the chances between 0 and 100 that you would obtain passing grades or higher in all subjects and would graduate in time, if you were to enroll in it?

Curriculum Chances		How sure are you		
	out of 100	about your answer?		
		\bigcirc I am sure about my answer		
		\bigcirc I am not sure about my answer		
(Curriculum name)		MIN chances:		
		MAX chances:		
		\bigcirc I have no idea about the chances		

イロン 不通と 不通と 不通と 一項

Eliciting Point Beliefs and Ambiguity

• Question: For each type of school below, what do you think would be the chances between 0 and 100 that you would obtain passing grades or higher in all subjects and would graduate in time, if you were to enroll in it?

Curriculum	Chances	How sure are you		
	out of 100	about your answer?		
		\bigcirc I am sure about my answer		
		\bigcirc I am not sure about my answer		
(Curriculum name)		MIN chances:		
		MAX chances:		
		\bigcirc I have no idea about the chances		

- Proposed interpretation:
 - 'I have no idea about the chances' = maximal ambiguity
 - 'I am unsure about my answer' = positive ambiguity
 - 'I am sure about my answer' = absence of ambiguity

Giustinelli & Pavoni

Evolution of Beliefs Ambiguity

Introduction	The Study	Measures	Theory	Results	Discussion

Children's Point Belief in Wave 1

Point Probabilities of Passing all Exams								
	.10Q	.25Q	.50Q	.75Q	.90Q	Mean	Std.Dev.	
Gen. Human	0	10	40	70	85	41.78	31.77	
Gen. Lang	1	20	50	80	90	48.73	32.26	
Gen. Math⪼	5	20	55	80	94	52.81	32.72	
Gen. ArtMusic	0	20	50	80	90	48.17	32.74	
Gen. SocSc	0	5	20	50	75	49.58	31.06	
Tech. Eco	10	25	55	80	95	52.66	31.20	
Tech. Tech	10	30	60	80	95	54.49	31.58	
Voc. Serv	5	30	60	85	100	55.25	33.07	
Voc. Ind&Craf	0	20	50	80	100	51.23	34.26	
Voc. Profess	0	20	60	90	100	57.06	35.75	

N in 471-543; missing in 16.33-27.43%

Mean Linear Regression of Child's Point Belief of Passing Curriculum:

	Gen	Gen	Gen	Gen	Gen	Tech	Tech	Voc	Voc	Voc
Predictors	Hum	Math	Lang	Art/Music	Soc Sci	Econ Sect	Tech Sect	Serv	Ind	Prof Train
							\frown			
female	-0.3904 (2.7720)	-9.9732*** (2.4960)	$\underset{(2.6728)}{2.1219}$	2.6996 (3.0062)	$-1.4633 \ {}_{(2.6503)}$	-3.8708 (2.7195)	(-12.6098^{***})	0.6968 (3.0550)	$-0.3646 \ {}_{(3.0684)}$	-0.1461 (3.2783)
foreign born	$\underset{\left(4.8489\right)}{5.5062}$	-4.1510 (4.4376)	10.8993** (4.5667)	6.0772 (5.1581)	-0.2409 (4.6343)	$\underset{(4.9311)}{-5.1832}$	-2.0442 (4.8662)	-2.7028 (5.4390)	$\underset{(5.4535)}{0.9987}$	-5.5562 (5.7644)
lives with both parents	0.3020 (4.6332)	$\underset{(4.2318)}{0.9220}$	2.4491 (4.3869)	3.2232 (4.8635)	$\underset{(4.4464)}{-3.1317}$	3.4697 (4.6611)	$\underset{(4.7026)}{5.4771}$	-0.4306 (5.1645)	7.0435 (5.2192)	2.8902 (5.5113)
mom has college+ degree	2.5239 (4.4053)	$\underset{(4.0281)}{1.7202}$	$\underset{(4.1667)}{5.9158}$	$\underset{(4.5835)}{5.0108}$	$\underset{(4.1841)}{4.4773}$	$\underset{(4.4138)}{5.0789}$	$\underset{(4.5043)}{\textbf{2.9847}}$	5.2585 (4.9789)	$\underset{\left(4.9811\right)}{\textbf{2.6368}}$	-3.3793 (5.2213)
mom has HS degree	-0.0399 (3.7006)	$\underset{(3.3834)}{\textbf{3.6821}}$	3.6437 (3.4934)	5.5602 (3.9223)	3.7593 (3.5274)	4.8878 (3.7227)	$\underset{(3.7532)}{4.0710}$	7.6281* (4.1605)	$\underset{(4.1982)}{\textbf{6.4758}}$	3.6273 (4.3967)
has stay-home mom	-2.0579 (3.2693)	$\underset{(2.9982)}{-4.3130}$	8.2376*** (3.0819)	$\underset{(3.4898)}{4.5865}$	0.3915 (3.1306)	2.0443 (3.2838)	1.0697 (3.3220)	0.1923 (3.6509)	$\underset{(3.6848)}{1.2572}$	2.5813 (3.9093)
has blue-collar dad	-4.8475 (3.2341)	-2.0761 (3.0023)	-5.2819* (3.0554)	$\underset{(3.3815)}{0.5268}$	-4.7257 (3.1054)	-3.2384 (3.2552)	$\underset{(3.3108)}{0.7741}$	$\underset{(3.6303)}{1.9136}$	-0.2506 (3.6653)	$\underset{(3.8758)}{\textbf{4.2690}}$
n of older siblings	-0.3560 (1.8564)	-0.3763 (1.6922)	-1.4926 (1.7566)	-0.8994 (1.9566)	0.3057 (1.7771)	$\underset{(1.8520)}{0.9013}$	3.6330* (1.8733)	$\underset{\left(2.0637\right)}{1.2780}$	$\underset{\left(2.0823\right)}{1.6541}$	2.3228 (2.2013)
7th-grade GPA/grade	$\underset{(1.6712)}{13.7428^{***}}$	$\underset{(1.5810)}{12.4881^{***}}$	$\underset{(1.5432)}{12.8561^{***}}$	$\underset{(1.4753)}{8.8692^{***}}$	$\underset{(1.5504)}{13.2541^{***}}$	$\underset{(1.6120)}{11.0582^{\ast\ast\ast}}$	$10.9407^{***} \\ (1.6284)$	$7.8185^{***} \\ \scriptstyle{(18317)}$	$\underset{(1.8264)}{11.3989^{***}}$	10.3459^{***} (1.9683)
curr. thought on own or	14.1747*** (3.6849)	21.8164*** (2.9284)	18.6188*** (3.0714)	14.1613*** (3.8090)	15.2164*** (3.7355)	10.3676*** (4.0068)	(10.3791*** (3.4990)	$\underbrace{\begin{array}{c} 14.4721^{***} \\ (4.9127) \end{array}}_{(4.9127)}$	6.8933 (8.3690)	10.3133 (7.7627)
discussed before wave 1										
knows curriculum	1.2068 (7.9463)	-0.2764 (8.5375)	8.5411 (8.0118)	16.6096*** (4.2777)	$\underset{(4.0534)}{10.1415}$	8.3477 (4.2908)	$\underset{(4.4875)}{14.7241}$	9.0740** (4.3254)	8.6139* (4.5848)	$\underbrace{\begin{array}{c}11.9797^{***}\\(4.5194)\end{array}}$
heard of curriculum	-2.4045 (8.0366)	-5.0082 (8.8967)	3.1398 (8.1342)	$\underset{(3.8084)}{1.3654}$	$\underset{(3.8904)}{2.8047}$	0.1502 (4.1670)	$\underset{\left(4.4494\right)}{6.8932}$	(11.0887*** (3.8583)	5.7666* (3.3539)	9.0545** (3.9126)
constant	-64.5426^{***} (14.3755)	$\begin{array}{c}-43.1459^{***}_{(14.4937)}\end{array}$	-66.3020*** (14.0502)	-49.8205^{***} (14.1514)	-59.3635*** (12.4914)	-38.1659*** (13.4042)	$\underset{(14.8461)}{-20.8819}$	-40.1682^{***} (13.6348)	-46.6537*** (14.8796)	-35.1262** (15.6970)

Introduction	The Study	Measures	Theory	Results	Discussion
	Childre	n's Ambigu	itv in Wa	ve 1	

%	'Sure'	'Unsure'	'No Idea of'
Aggregate	75.5	14.0	10.5
Predictors of Ambiguity in Wave 1: Poisson Regression

Predictors	'No Idea'	+'Unsure'	'No	ldea'
female	-0.0178 (0.0696)	0.0040 (0.0701)	0.2684*** (0.0941)	0.2938*** (0.0946)
foreign born	0.2109* (0.1138)	$0.1396^{*}_{(0.1164)}$	0.0699 (0.1525)	-0.0191 (0.1557)
lives with both parents	0.2215** (0.1063)	0.2019 (0.1063)	0.3207** (0.1356)	0.2996** (0.1354)
mom college+ degree	0.0560 (0.1138)	0.0049 (0.1152)	0.0235 (0.1421)	-0.0386 (0.1441)
mom has HS degree	0.1336 (0.0984)	0.0938 (0.0994)	-0.1113 (0.1230)	-0.1647 (0.1247)
has stay-home mom	-0.2081** (0.0876)	-0.2311^{***}	-0.0522 (0.1128)	-0.0795 (0.1131)
has blue-collar dad	-0.0801 (0.0839)	-0.0769	-0.0969 (0.1102)	-0.0909 (0.1102)
n of older siblings	0.0175 (0.0468)	0.026 (0.0466)	-0.0024 (0.0619)	0.0073 (0.0614)
7th-grade GPA	0.0692* (0.0412)	0.0792* (0.0412)	-0.0248 (0.0552)	-0.0108 (0.0552)
N alt. discussed/thought	$-0.0433^{*}_{(0.0245)}$	-0.0375	$-0.1683^{***}_{(0.0372)}$	-0.1608^{***}
N alt. aware of	-	-0.0557*** (0.0176)	_	-0.0712^{***}
constant	0.2160 (0.3274)	0.6770* (0.3547)	0.5279 (0.4316)	$1.1075^{**}_{(0.4639)}$

Giustinelli & Pavoni

Evolution of Beliefs Ambiguity

Introduction

The Study

Measures

Theory

Results

Discussion

Conceptual Framework

Giustinelli & Pavoni

イロト イロト イヨト イヨト 三日

Subjective Beliefs and Ambiguity

1. Consider the following two bets

イロト 不得 トイヨト イヨト

Discussion

Subjective Beliefs and Ambiguity

1. Consider the following two bets

Bet C: Bet on the flip of a coin (you have in your pocket): If T you gain \$100

Giustinelli & Pavoni

イロト イポト イヨト イヨト

Subjective Beliefs and Ambiguity

- 1. Consider the following two bets
- Bet C: Bet on the flip of a coin (you have in your pocket): If *T* you gain \$100
- Bet H: Bet on a two horses (A & B) race (you watch on TV): If horse A wins you get \$100

イロト イポト イヨト イヨト

Subjective Beliefs and Ambiguity

- 1. Consider the following two bets
- Bet C: Bet on the flip of a coin (you have in your pocket): If *T* you gain \$100
- Bet H: Bet on a two horses (A & B) race (you watch on TV): If horse A wins you get \$100

Christmas Present: Which one you prefer?

Subjective Beliefs and Ambiguity

- 1. Consider the following two bets
- Bet C: Bet on the flip of a coin (you have in your pocket): If *T* you gain \$100
- Bet H: Bet on a two horses (A & B) race (you watch on TV): If horse A wins you get \$100

Christmas Present: Which one you prefer?

2. Consider now the following two bets

Subjective Beliefs and Ambiguity

- 1. Consider the following two bets
- Bet C: Bet on the flip of a coin (you have in your pocket): If *T* you gain \$100
- Bet H: Bet on a two horses (A & B) race (you watch on TV): If horse A wins you get \$100

Christmas Present: Which one you prefer?

- 2. Consider now the following two bets
- Bet C: Bet on the coin flip (again, it is yours): If *T* you gain \$100

Subjective Beliefs and Ambiguity

- 1. Consider the following two bets
- Bet C: Bet on the flip of a coin (you have in your pocket): If *T* you gain \$100
- Bet H: Bet on a two horses (A & B) race (you watch on TV): If horse A wins you get \$100

Christmas Present: Which one you prefer?

- 2. Consider now the following two bets
- Bet C: Bet on the coin flip (again, it is yours): If *T* you gain \$100
- Bet H: Bet on the horse race (same as above): If horse *B* wins you get \$100

Subjective Beliefs and Ambiguity

- 1. Consider the following two bets
- Bet C: Bet on the flip of a coin (you have in your pocket): If *T* you gain \$100
- Bet H: Bet on a two horses (A & B) race (you watch on TV): If horse A wins you get \$100

Christmas Present: Which one you prefer?

- 2. Consider now the following two bets
- Bet C: Bet on the coin flip (again, it is yours): If *T* you gain \$100
- Bet H: Bet on the horse race (same as above): If horse *B* wins you get \$100

Which one you prefer now?

Subjective Beliefs and Ambiguity

- 1. Consider the following two bets
- Bet C: Bet on the flip of a coin (you have in your pocket): If *T* you gain \$100
- Bet H: Bet on a two horses (A & B) race (you watch on TV): If horse A wins you get \$100

Christmas Present: Which one you prefer?

- 2. Consider now the following two bets
- Bet C: Bet on the coin flip (again, it is yours): If *T* you gain \$100
- Bet H: Bet on the horse race (same as above): If horse *B* wins you get \$100

Which one you prefer now?

In experiments people often choose bet C in both cases 1. & 2.

イロト イロト イヨト イヨト 三日

Discussion

Subjective Beliefs

• (Finite) set of possible states of nature: $\boldsymbol{\Omega}$

	÷	r			÷		n
9	L		u	C		U	

・ロト ・四ト ・ヨト ・ヨト

Discussion

Subjective Beliefs

- (Finite) set of possible states of nature: $\boldsymbol{\Omega}$
- A 'probability model' is a distribution m over Ω

roduction	The Study	Measures	Theory	Results	Discussion

Subjective Beliefs

- (Finite) set of possible states of nature: $\boldsymbol{\Omega}$
- A 'probability model' is a distribution m over Ω
- Two types of states $\Omega=\Omega_1\times\Omega_2$

イロン イロン イヨン イヨン 三日

Introduction	The Study	Measures	Theory	Results	Discussion
		Subjective	Beliefs		

- (Finite) set of possible states of nature: Ω
- A 'probability model' is a distribution m over Ω
- Two types of states $\Omega = \Omega_1 \times \Omega_2$

Schooling-related states $\omega_1 = (\omega_1^1, \dots, \omega_1^k, \dots, \omega_1^N), \, \omega_1^k \in \{0, 1\}$

Introduction	The Study	Measures	Theory	Results	Discussion
		Subjective	Reliefs		

CLIVE Dellers

- (Finite) set of possible states of nature: Ω
- A 'probability model' is a distribution m over Ω
- Two types of states $\Omega = \Omega_1 \times \Omega_2$

Schooling-related states $\omega_1 = (\omega_1^1, \dots, \omega_1^k, \dots, \omega_1^N), \, \omega_1^k \in \{0, 1\}$ $\omega_1^k = 1$ means the children passes all exams of curriculum k

・ロン ・国ン ・国ン ・国ン 三国

Introduction	The Study	Measures	Results	Discussion	
		Subjective	Beliefs		

- (Finite) set of possible states of nature: $\boldsymbol{\Omega}$
- A 'probability model' is a distribution m over Ω
- Two types of states $\Omega=\Omega_1\times\Omega_2$

Schooling-related states $\omega_1 = (\omega_1^1, \dots, \omega_1^k, \dots, \omega_1^N), \omega_1^k \in \{0, 1\}$ $\omega_1^k = 1$ means the children passes all exams of curriculum k

• Choosing curriculum k makes state ω_1^k relevant for payoffs

・ロン ・国ン ・国ン ・国ン 三国

Introduction	The Study	Measures	Theory	Results	Discussion
		Subjective	Beliefs		

- (Finite) set of possible states of nature: $\boldsymbol{\Omega}$
- A 'probability model' is a distribution m over Ω
- Two types of states $\Omega=\Omega_1\times\Omega_2$

Schooling-related states $\omega_1 = (\omega_1^1, \dots, \omega_1^k, \dots, \omega_1^N), \ \omega_1^k \in \{0, 1\}$ $\omega_1^k = 1$ means the children passes all exams of curriculum k

• Choosing curriculum k makes state ω_1^k relevant for payoffs

• Let
$$C^k := \{\omega \in \Omega : \omega_1^k = 1\}$$

Prior probability:
$$\pi_0^k := m(C^k)$$
.

・ロン ・国ン ・国ン ・国ン 三国

Evolution of Beliefs

• Events prior to enrollment are in Ω_2 (informative signals)

Evolution of Beliefs

- Events prior to enrollment are in Ω_2 (informative signals)
- \bullet School faculty and programs have chosen/designed $\mathcal{T} \subset \Omega$

3

イロト 不得 トイヨト イヨト

Evolution of Beliefs

- Events prior to enrollment are in Ω_2 (informative signals)
- \bullet School faculty and programs have chosen/designed $\mathcal{T} \subset \Omega$
- Learning target:

$$\pi^k(\mathcal{T}) := rac{m(\mathcal{C}^k \cap \mathcal{T})}{m(\mathcal{T})} = m(\mathcal{C}^k|\mathcal{T}).$$

3

イロト 不得 トイヨト イヨト

- Events prior to enrollment are in Ω_2 (informative signals)
- \bullet School faculty and programs have chosen/designed $\mathcal{T} \subset \Omega$
- Learning target:

$$\pi^k(\mathcal{T}) := \frac{m(\mathcal{C}^k \cap \mathcal{T})}{m(\mathcal{T})} = m(\mathcal{C}^k | \mathcal{T}).$$

• In 'wave' t = 1, 2, 3 child *i* gets information $\mathcal{I}_t^i \subset \Omega$

3

(日) (同) (三) (三) (三)

Evolution of Beliefs

- Events prior to enrollment are in Ω_2 (informative signals)
- \bullet School faculty and programs have chosen/designed $\mathcal{T} \subset \Omega$
- Learning target:

$$\pi^k(\mathcal{T}) := rac{m(\mathcal{C}^k \cap \mathcal{T})}{m(\mathcal{T})} = m(\mathcal{C}^k|\mathcal{T}).$$

- In 'wave' t = 1, 2, 3 child *i* gets information $\mathcal{I}_t^i \subset \Omega$
- Child *i* posterior belief

$$\pi_t^k(\mathcal{I}_t^i) = m(C^k|\mathcal{I}_t^i).$$

3

イロト イポト イヨト イヨト

Evolution of Beliefs

- Events prior to enrollment are in Ω_2 (informative signals)
- \bullet School faculty and programs have chosen/designed $\mathcal{T} \subset \Omega$
- Learning target:

$$\pi^k(\mathcal{T}) := \frac{m(\mathcal{C}^k \cap \mathcal{T})}{m(\mathcal{T})} = m(\mathcal{C}^k | \mathcal{T}).$$

- In 'wave' t = 1, 2, 3 child *i* gets information $\mathcal{I}_t^i \subset \Omega$
- Child *i* posterior belief

$$\pi_t^k(\mathcal{I}_t^i) = m(C^k|\mathcal{I}_t^i).$$

• Learning assumption: for all $i, \mathcal{T} \subset \mathcal{I}_3^i \subset \mathcal{I}_2^i \subset \mathcal{I}_1^i$

Giustinelli & Pavoni

(日) (同) (三) (三) (三)

Introduction	The Study	Measures	Theory	Results	Discussion
		Ambiguit	су		

• The children holds a set *M* of 'probability models'

Introduction	The Study	Measures	Theory	Results	Discussion
		Ambig	uity		

- The children holds a set *M* of 'probability models'
- Recall C^k , now for each model $m \in M$ we have a prior $\pi_0^{k,m}$

Introduction	The Study	Measures	Theory	Results	Discussion
		Ambig	uity		

- The children holds a set *M* of 'probability models'
- Recall C^k , now for each model $m \in M$ we have a prior $\pi_0^{k,m}$
- Useful objects are: the max, the min and the range:

$$\overline{\pi}_0^k := \max_{m \in M} \pi_0^{k,m}, \quad \underline{\pi}_0^k := \min_{m \in M} \pi_0^{k,m}, \quad \text{and} \quad R_0^k := \overline{\pi}_0^k - \underline{\pi}_0^k.$$

Introduction	The Study	Measures	Theory	Results	Discussion
		Ambig	uity		

- The children holds a set *M* of 'probability models'
- Recall C^k , now for each model $m \in M$ we have a prior $\pi_0^{k,m}$
- Useful objects are: the max, the min and the range:

$$\overline{\pi}_0^k := \max_{m \in \mathcal{M}} \pi_0^{k,m}, \quad \underline{\pi}_0^k := \min_{m \in \mathcal{M}} \pi_0^{k,m}, \quad \text{and} \quad R_0^k := \overline{\pi}_0^k - \underline{\pi}_0^k.$$

• R_0^k is a measure of 'model uncertainty' or ambiguity

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のぐの

Introduction	The Study	Measures	Theory	Results	Discussion
		Ambiguit	у		

- The children holds a set *M* of 'probability models'
- Recall C^k , now for each model $m \in M$ we have a prior $\pi_0^{k,m}$
- Useful objects are: the max, the min and the range:

$$\overline{\pi}_0^k := \max_{m \in \mathcal{M}} \pi_0^{k,m}, \quad \underline{\pi}_0^k := \min_{m \in \mathcal{M}} \pi_0^{k,m}, \quad \text{and} \quad R_0^k := \overline{\pi}_0^k - \underline{\pi}_0^k.$$

- R_0^k is a measure of 'model uncertainty' or ambiguity
- Note that it is an individual measure

Learning under Ambiguity? As usual.

• If we want to keep time consistency, we need Bayesian updating model-by-model (Epstein and Schneider, 2003):

for each \mathcal{I}_t , and $m \in M$, $\pi_t^{k,m}(\mathcal{I}_t) = m(C^k | \mathcal{I}_t)$.

Introduction

イロン 不通と 不通と 不通と 一項

Learning under Ambiguity? As usual.

• If we want to keep time consistency, we need Bayesian updating model-by-model (Epstein and Schneider, 2003):

for each \mathcal{I}_t , and $m \in M$, $\pi_t^{k,m}(\mathcal{I}_t) = m(C^k | \mathcal{I}_t)$.

• And then again $\overline{\pi}_t^k, \, \underline{\pi}_t^k$, and R_t^k

oduction The Study

・ロン ・国ン ・国ン ・国ン 三国

Learning under Ambiguity? As usual.

• If we want to keep time consistency, we need Bayesian updating model-by-model (Epstein and Schneider, 2003):

for each \mathcal{I}_t , and $m \in M$, $\pi_t^{k,m}(\mathcal{I}_t) = m(C^k | \mathcal{I}_t)$.

- And then again $\overline{\pi}_t^k, \, \underline{\pi}_t^k$, and R_t^k
- \bullet Learning assumption: there is some event $\mathcal{I}_{\textit{M}} \subset \mathcal{T}$ such that

$$m(\cdot | \mathcal{I}_M) = m'(\cdot | \mathcal{I}_M)$$
 for all $m, m' \in M$.

ntroduction

Learning under Ambiguity? As usual.

• If we want to keep time consistency, we need Bayesian updating model-by-model (Epstein and Schneider, 2003):

for each \mathcal{I}_t , and $m \in M$, $\pi_t^{k,m}(\mathcal{I}_t) = m(C^k | \mathcal{I}_t)$.

- And then again $\overline{\pi}_t^k, \, \underline{\pi}_t^k$, and R_t^k
- \bullet Learning assumption: there is some event $\mathcal{I}_{\textit{M}} \subset \mathcal{T}$ such that

$$m(\cdot | \mathcal{I}_M) = m'(\cdot | \mathcal{I}_M)$$
 for all $m, m' \in M$.

 $\Rightarrow R^k(\mathcal{I}_M) = 0 \ \forall k$

roduction

Learning under Ambiguity? As usual.

• If we want to keep time consistency, we need Bayesian updating model-by-model (Epstein and Schneider, 2003):

for each \mathcal{I}_t , and $m \in M$, $\pi_t^{k,m}(\mathcal{I}_t) = m(C^k | \mathcal{I}_t)$.

- And then again $\overline{\pi}_t^k, \, \underline{\pi}_t^k$, and R_t^k
- \bullet Learning assumption: there is some event $\mathcal{I}_{\textit{M}} \subset \mathcal{T}$ such that

$$m(\cdot | \mathcal{I}_M) = m'(\cdot | \mathcal{I}_M)$$
 for all $m, m' \in M$.

 $\Rightarrow R^k(\mathcal{I}_M) = 0 \ \forall k$

\Rightarrow With enough information ambiguity disappears.

Giustinelli & Pavoni

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Introduction	The Study	Measures	Theory	Results	Discussion
	(Un)A	wareness?	Do not wo	orry.	

- If child does not know a curriculum exists, he simply ignores it (he does not know that he does not know it,)
- What if the child discovers a new curriculum, say j?
- Karni and Vierø (2013-2015) tell us:
 - The new π^j_t is of course to be determined
 - Old π_t^k for $k \neq j$ are as when the child did not know j existed
- Allows to not worry about limited awareness for beliefs

Introduction

The Study

Measures

Theor

Results

Discussion

Evolution in Awareness

Giustinelli & Pavoni
◆□> ◆圖> ◆臣> ◆臣> □臣

Children's Awareness in Wave 1

	'Know'	'Heard of'	'Never heard of'
Aggregate	42.45	41.11	16.44
Gen, Art	51.56	44.24	4.21
Gen, Humanities	59.81	35.67	4.52
Gen, Languages	66.04	29.13	4.83
Gen, Math & Science	73.21	22.59	4.21
Gen, Music & Choral	31	44.70	24.30
Gen, Soc Sciences	35.36	46.42	18.22
Tech, Economic Sector	35.98	47.51	16.51
Tech, Technology Sector	42.68	43.61	13.71
Voc, Services	28.66	47.20	24.14
Voc, Industry & Crafts	17.60	46.11	36.29
Voc, Prof Training	25.08	45.02	29.91

◆□> ◆圖> ◆臣> ◆臣> □臣

Children's Awareness in Wave 3

	'Know'	'Heard of'	'Never heard of'
Aggregate	61.54	32.95	5.51
Gen, Art	70.13	28.10	1.77
Gen, Humanities	77.43	21.02	1.55
Gen, Languages	78.54	20.35	1.11
Gen, Math & Science	84.73	13.50	1.77
Gen, Music & Choral	47.79	45.13	7.08
Gen, Soc Sciences	62.39	33.63	3.98
Tech, Economic Sector	55.75	39.16	5.09
Tech, Technology Sector	60.84	34.51	4.65
Voc, Services	49.34	40.71	9.96
Voc, Industry & Crafts	39.82	47.35	12.83
Voc, Prof Training	50.22	38.94	10.84

The

Results

イロト 不得 トイヨト イヨト 二日

Discussion

Transitions in Awareness I: Wave 1 to Wave 3

UNCONDITIONAL

	Know	Heard	NoHeard	Ν
Know	0.86	0.13	0.01	1333
Heard	0.47	0.48	0.05	1194
NoHear	0.33	0.52	0.15	443

Children who responded to both W1 & W3

Introduction	The Study	Measures	Theory	Results	Discussion

Transitions on Awareness II: Wave 1 to Wave 2

Ranked Bottom W1

Ranked First W1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

	Know	Heard	NoHeard	χ^2		Know	Heard	NoHeard	Ν
Know	0.79	0.20	0.01	(***)	Know	0.97	0.03	0.00	267
Heard	0.40	0.55	0.06	(***)	Heard	0.72	0.22	0.06	49
NHear	0.24	0.52	0.24		NHear	0.50	0.38	0.12	16

Children who responded to both W1 & W2

Introduction

The Study

Measures

Theor

Results

Discussion

Evolution in Ambiguity

Giustinelli & Pavoni

11				

イロト 不聞 と 不同 と 不同 とう

Children's Ambiguity in Wave 1

	'Sure'	'Unsure'	'No Idea'
Aggregate	76.44	13.10	10.47
Gen., Humanities	76.2	14.97	8.82
Gen., Languages	79.84	13.44	6.72
Gen., Math&Science	76.74	17.11	6.15
Gen., Art or Music	77.13	15.16	7.71
Gen., Social Sciences	74.32	16.49	9.19
Tech., Economic Sec.	75	16.85	8.15
Tech., Techn. Sec.	77.38	12.53	10.08
Voc., Services	73.7	10.41	15.89
Voc., Ind.&Crafts	77.62	6.91	15.47
Prof. Develop. Train.	76.39	6.67	16.94

11				

イロト 不聞 と 不同 と 不同 とう

Children's Ambiguity in Wave 3

	'Sure'	'Unsure'	'No Idea'
Aggregate	80.96	5.72	13.32
Gen., Humanities	87.22	5.4	7.39
Gen., Languages	87.32	5.92	6.76
Gen., Math&Science	85.43	6.57	8
Gen., Art or Music	85.31	5.65	9.04
Gen., Social Sciences	81.48	7.41	11.11
Tech., Economic Sec.	80.17	7.08	12.75
Tech., Techn. Sec.	76.82	6.42	16.76
Voc., Services	74.93	4.84	20.23
Voc., Ind.&Crafts	75.07	3.97	20.96
Prof. Develop. Train.	75.85	3.98	20.17

Introduction The Study Measures Theory **Results** Disc

Transitions in Ambiguity I: Wave 1 to Wave 3

UNCONDITIONAL

	Sure	Unsure	Noldea	Ν
Sure	0.86	0.02	0.12	1790
Unsure	0.64	0.17	0.19	247
No Idea	0.51	0.03	0.46	287

Children who responded to both W1 & W3

Giustinelli & Pavoni

ntroduction The Study Measures Theory Results Discussion

Ambiguity Transitions II: Wave 1 to Wave 2

Ranked Bottom W1

Ranked First W1

イロト 不得 トイヨト イヨト 二日

	Sure	Unsure	Noldea	χ^2		Sure	Unsure	Noldea	Ν
Sure	0.84	0.02	0.14	(***)	Sure	0.92	0.02	0.06	248
Unsure	0.67	0.17	0.16		Unsure	0.68	0.22	0.10	40
Noldea	0.55	0.05	0.40		Noldea	1.00	0.00	0.00	5

Children who responded to both W1 & W2

The

Results

Discussion

Ambiguity Transitions III: Wave 1 to Wave 3

UNCONDITIONAL

CHOSEN

イロト 不得 トイヨト イヨト 二日

	Sure	Unsure	Noldea	χ^2		Sure	Unsure	Noldea	Ν
Sure	0.86	0.02	0.12	(***)	Sure	0.93	0.02	0.01	149
Unsure	0.71	0.15	0.14		Unsure	0.73	0.22	0.05	22
Noldea	0.58	0.04	0.39		Noldea	0.43	0.14	0.43	7

Children who responded to both W1 & W3

Introduction	The Study	Measures	Theory	Results	Discussion

Evolution in Beliefs and Ranges

• (Raw) dispersion of beliefs is tricky as approx. to knowledge/information in the sample

3

・ロト ・聞ト ・ヨト ・ヨト

- (Raw) dispersion of beliefs is tricky as approx. to knowledge/information in the sample
- Reported Ranges:

$$R_t^i = \overline{\pi}_t^i - \underline{\pi}_t^i + \Delta \mu_t^i$$

are individual measure of knowledge/information

3

イロト 不得 トイヨト イヨト

- (Raw) dispersion of beliefs is tricky as approx. to knowledge/information in the sample
- Reported Ranges:

$$R_t^i = \overline{\pi}_t^i - \underline{\pi}_t^i + \Delta \mu_t^i$$

are individual measure of knowledge/information

• We can hence study their average evolution across alternatives

3

イロト 不得 トイヨト イヨト

Giustinelli & Pavoni

Evolution of Beliefs Ambiguity

Introduction	The Study	Measures	Theory	Results	Discussion
--------------	-----------	----------	--------	---------	------------

Evolution of the Ambiguity Ranges I: Alternatives

Giustinelli & Pavoni

Evolution of Beliefs Ambiguity

Introduction The Study Measures Theory **Results** Discussion

Evolution of the Ambiguity Ranges II: Ranking

Giustinelli & Pavoni

Evolution of Beliefs Ambiguity

		Diama	1 I		
Introduction	The Study	Measures	Theory	Results	Discussion

• We focused on an outcome close to theory interpretation

Th

ults

Discussion

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)
- Systematic Increase in ambiguity for certain alternatives

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)
- Systematic Increase in ambiguity for certain alternatives
- Can be rationalised with selective use of 'limited memory'

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)
- Systematic Increase in ambiguity for certain alternatives
- Can be rationalised with selective use of 'limited memory'
- If we insists on this view, important implications for policy

Giustinelli & Pavoni

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)
- Systematic Increase in ambiguity for certain alternatives
- Can be rationalised with selective use of 'limited memory'
- If we insists on this view, important implications for policy
- In any case, evidence relevant for estimation in choice models

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)
- Systematic Increase in ambiguity for certain alternatives
- Can be rationalised with selective use of 'limited memory'
- If we insists on this view, important implications for policy
- In any case, evidence relevant for estimation in choice models
 - Care must be taken in use of data for unchosen alternatives

Giustinelli & Pavoni

Evolution of Beliefs Ambiguity

- We focused on an outcome close to theory interpretation
- Awareness converges more clearly than Ambiguity
- Some unawareness remains before pre-enrollment (W3)
- Systematic Increase in ambiguity for certain alternatives
- Can be rationalised with selective use of 'limited memory'
- If we insists on this view, important implications for policy
- In any case, evidence relevant for estimation in choice models
 - Care must be taken in use of data for unchosen alternatives
 - Incorporate into choice, process for learning or bias generation

Giustinelli & Pavoni

Evolution of Beliefs Ambiguity

• The work very much in progress

- The work very much in progress
- Ranges promising measures for (aggregate) information

- The work very much in progress
- Ranges promising measures for (aggregate) information
- Similar measures easier to elicit can be investigated

- The work very much in progress
- Ranges promising measures for (aggregate) information
- Similar measures easier to elicit can be investigated
- Future: see how beliefs react to grades (observable shocks)

3

イロト 不得 トイヨト イヨト

Introduction

The Study

Measures

Theory

Results

Discussion

Sample Characteristics I	Children W/1 Sample	Children W18W3 Sample	
Sample Characteristics I			
	(N=649)	(N=410)	
Child's gender			
% male	46.53	43.17	
% female	53.47	56.83	
Child's place of birth			
% Italy	86.36	88.02	
Child's age			
mean	13.0929	13.0732	
std. dev.	0.4249	0.4072	
Child's age vs. school grade			
% regular (born in 1998)	83.9	85.12	
% ahead (born after 1998)	3.87	4.15	
% behind (born before 1998)	12.23	10.73	
Child's GPA (out of 10)			
mean	7.6541	7.7405	
std. dev.	0.9663	0.9719	
Parent/s' child lives with			
% both parents	87.84	88.2	
% one parent	11.66	11.44	
% none	0.51	0.35	
Number of older siblings			
mean	0.6248	0.5594	
std. dev.	0.7636	0.6966	

Giustinelli & Pavoni

Evolution of Beliefs Ambiguity

The Study

Measures

Results

Discussion

Sample Characteristics II	Children W1 Sample (N=649)	Child W1&W3 Sample (N=410)
Mother's country of birth		
% Italy	87.79	82.7
Father's place of birth		
% Italy	81.16	83.03
Mother's school degree		
elementary or less	2.37	1.85
junior high school	20.14	18.78
HS diploma (includes 3-yrs vocational)	50.08	52.12
college degree or higher	27.41	27.25
Father's school degree		
elementary or less	1.94	1.62
junior high school	21.3	22.16
HS diploma (includes 3-yrs vocational)	50.35	50.81
college degree or higher	26.41	25.41
Mother's working status		
full-time	39.43	41.04
part-time	37.58	36.36
does not work	22.90	22.60
Father's working status	02.06	01.04
full-time	92.06	91.84
part-time	4.32	4.21
does not work	3.63	3.95

Giustinelli & Pavoni

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Awareness in W1: Poisson Regression of N of Alternatives Child is Aware of

Predictors	'Know' +	'Heard of'	'Know'		
female	0.0443 (0.0327)	0.0408 (0.0330)	$0.1901^{***}_{(0.0456)}$	0.1725*** (0.0459)	
foreign born	-0.1501^{**}	$-0.1458^{**}_{(0.0618)}$	-0.2538*** (0.0879)	$-0.2310^{***}_{(0.0882)}$	
lives with both parents	-0.0335 (0.0566)	-0.0326 (0.0566)	0.0393 (0.0754)	0.0449 (0.0755)	
mom college+ degree	$-0.0941^{*}_{(0.0521)}$	$-0.0941^{*}_{(0.0521)}$	-0.0572 (0.0720)	-0.0575 (0.0721)	
mom has HS degree	-0.0660 (0.0437)	-0.0667 (0.0437)	-0.0518 (0.0605)	-0.0557 (0.0606)	
has stay-home mom	-0.0397 (0.0396)	-0.0374 (0.0397)	-0.0611 (0.0551)	-0.0484 (0.0553)	
has blue-collar dad	0.0057 (0.0390)	0.0085 (0.0392)	0.0503 (0.0535)	0.0650 (0.0537)	
n of older siblings	0.0145 (0.0222)	0.0149 (0.0222)	0.0389 (0.0305)	0.0413 (0.0304)	
7th-grade GPA	0.0236 (0.0193)	0.0205 (0.0197)	0.0035 (0.0267)	-0.0124 (0.0271)	
N alt. discussed/thought	_	0.0094 (0.0111)	—	0.0484*** (0.0149)	
constant	2.1055*** (0.8692)	2.1140 ^{***} (0.1552)	1.4985 ^{***} (0.2137)	1.5387*** (1.2137)	

Introduction	The Study	Measures	Theory	Results	Discussion
--------------	-----------	----------	--------	---------	------------

Awareness in W3: Poisson Regression of N of Alternatives Child is Aware of

Predictors	'Know' +	'Heard of'	'Kno	ow'
female	-0.0057 (0.0468)	-0.0067 (0.0467)	0.0529 (0.0577)	0.0536 (0.0577)
foreign born	-0.0633 (0.0863)	-0.0501 (0.0867)	-0.1102 (0.1066)	-0.0751 (0.1074)
lives with both parents	-0.0207 (0.0815)	-0.0111 (0.0817)	-0.0440 (0.1014)	-0.0048 (0.1023)
mom college+ degree	-0.0350 (0.0766)	-0.0092 (0.0784)	0.1127 (0.0950)	0.2037** (0.0957)
mom has HS degree	-0.0334 (0.0650)	-0.0198 (0.0656)	0.0541 (0.0807)	0.0935 (0.0807)
has stay-home mom	-0.0033 (0.0543)	-0.0010 (0.0544)	$0.1345^{**}_{(0.0661)}$	0.1091 (0.0664)
has blue-collar dad	-0.0376 (0.058)	-0.0348 (0.0586)	-0.0227 (0.0717)	-0.0728 (0.0719)
n of older siblings	0.0099 (0.0317)	0.0103 (0.0317)	-0.0809** (0.0399)	-0.0507 (0.0408)
7th-grade GPA	-0.0052 (0.0267)	-0.0074 (0.0268)	$-0.0967^{***}_{(0.0330)}$	-0.0769^{**} (0.0332)
N alt. discussed/thought in W1	0.0013 (0.0151)	-0.0021 (0.0153)	0.0404** (0.0181)	0.0083 (0.0187)
N alt. aware/knows in W1	_	0.0196 (0.0130)	—	0.0857 ^{***} (0.0103)
constant	2.4403*** (0.2113)	$2.2611^{***}_{(0.2429)}$	2.5634 (0.2598)	1.9441 (0.2748)

Giustinelli & Pavoni

Predictors of Ambiguity in Wave 3: Poisson Regression

Predictors	'No Idea'	+'Unsure'	'No Idea'		
female	0.3881*** (0.1066)	0.3897*** (0.1073)	0.4246*** (0.1192)	0.4085 ^{***} (0.1200)	
foreign born	0.3712^{***} (0.1621)	0.2420 (0.1664)	0.3447* (0.1930)	0.2352 (0.1965)	
lives with both parents	0.3509** (0.1517)	0.2717* (0.1538)	0.4586*** (0.1728)	0.3995** (0.1745)	
mom college+ degree	-0.7517^{**} (0.1582)	-0.9077^{***} (0.1624)	-1.0723^{***} (0.1726)	-1.2621^{***} (0.1789)	
mom has HS degree	-0.4574*** (0.1285)	-0.5435^{***} (0.1311)	-0.7847^{***} (0.1374)	-0.9048*** (0.1420)	
has stay-home mom	-0.3120^{***}	-0.3239^{***} (0.1214)	-0.2153 (0.1329)	-0.2295^{*}	
has blue-collar dad	-0.2636** (0.1295)	-0.3150^{**}	-0.7061^{***}	-0.7555^{***}	
n of older siblings	0.0795** (0.0670)	0.0777 (0.0666)	-0.0596 (0.0802)	-0.0538 (0.0792)	
7th-grade GPA	0.0916 (0.0573)	0.0993* (0.0564)	0.1010 (0.0658)	$0.1238^{*}_{(0.0647)}$	
N alt. discussed/thought	-0.0912^{**}	$-0.0682^{*}_{(0.0363)}$	$-0.2503^{***}_{(0.0472)}$	-0.2218^{***}	
N alt. aware of	_	-0.1222^{***}	_	-0.1340^{***}	
constant	0.4760 (0.4527)	1.6219 ^{***} (0.4991)	0.7520 (0.5169)	1.9055*** (0.5556)	

 $\langle \Box \rangle$

< 17 >