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Purpose of this talk 
 

1. Indicate some of the identification problems that have been studied in 
economics of social interactions; problems that apply to evaluation of 
the consequences of segregation. 
 

2.  Argue that segregation, as an equilibrium outcome of endogenous 
social structure formation, should be modeled with behaviors for 
which we are concerned that segregation matters. 
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Social Interactions: Basic Ideas 
 

 

1. Individual beliefs, preferences, and opportunities are conditioned by 
group memberships.  This conditioning often takes the form of 
complementarities, so the likelihood or level of an action by one person 
increases with respect to the behavior (or certain characteristics) of other 
 
-social multipliers created 
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2. Memberships evolve in response to these interactions.  Groups stratify 
along characteristics which affect outcomes. 
 
-leads to social and economic segregation 
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3. Inequality and poverty result as members of family dynasties 
persistently face different interaction environments   
 
-limiting case is a poverty trap 
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Key Features of this Approach 
 
 

1. Individual incentives and social structure meld into a more general 
explanation of individual behavior.   
 
2. Aggregate behaviors such as crime or nonmarital fertility rates emerge 
through the interactions within a heterogeneous population 
 
3. Segregation effects are manifestations of characteristics and behaviors 
of group members. 
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Theory 

 
Consider I  individuals who are members of a common group g.  Our 

objective is to probabilistically describe the individual choices of each i, iω  

(a choice that is taken from the elements of some set of possible behaviors 

iΩ ) and thereby characterize the vector of choices of all members of the 

group, ω .   
 

It is useful to distinguish between five forms of influences on individual 
choices.   
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iX , r −vector of deterministic (to the modeler) individual-specific 

characteristics,   
 

gY , s −vector of deterministic (to the modeler) group-specific 

characteristics 
 

( )e
i iµ ω− , the beliefs individual i  possesses about behaviors of others in the 

group, expressed as a probability measure over those behaviors.  
 

iε , vector of random individual-specific characteristics associated with i , 

unobservable to the modeler 
 

gα  vector of random group-specific characteristics, unobservable to 

modeler 
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Individual choices iω  are characterized as representing the maximization of 

some payoff function V , 
 

( )( )argmax , , , , ,
i

e
i i g i i i gV X Yλω λ µ ω ε α∈Ω −=  

 
The decision problem facing an individual as a function of preferences 
(embodied in the specification of V ), constraints (embodied in the 

specification of iΩ ) and beliefs (embodied in the specification of  ( )e
i iµ ω− ).   

 
As such, the analysis is based on completely standard microeconomic 
reasoning to describe individual decisions.  
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Beliefs 
 

This basic choice model is closed by imposing self-consistency between 

subjective beliefs ( )e
i iµ ω−  and the objective conditional probabilities 

( )|i iFµ ω− . 

 
Self-consistency is equivalent to rational expectations in the usual sense.   
 
From the perspective of modeling individual behaviors, it is typically 
assumed that agents do not account for the effect of their choices on the 
decisions of others via expectations formation.  
 
Equilibrium concept: Bayes/Nash 
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Characterizing Discrete Choice with Social Interactions 
 
Suppose agents face {0... 1}l L∈ −  choices. Assume that the utility of choice 

l  is  
 

, ,
e

l i l g i l i l gc X d Y Jp ε α+ + + +  

 
and let 
 

il l i l g gh c X d Y α= + +  
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Then, the conditional probability of choice l  is 
 
 

( )
( )

, ,

{0... 1} , , , , ,

,

argmax ,

e
i i j i j

e e
j L i j i j i j i j i j

l h p j

h Jp l h p j

µ ω

µ ε∈ −

= ∀ =

+ + = ∀
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Assume that the random payoff terms ,i lε   are iid and double exponentially 

distributed 
 

( ) ( )( ), exp expi lµ ε ς βς γ≤ = − − +  

 
where γ  is Euler’s constant. 

 
Note that β  indexes the dispersion in the individual-specific unobserved 

utility terms. 
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Choices will, under this density assumption, obey the canonical 
multinomial logit probability structure  
 

( ) ( )
( )

, ,
, , 1

, ,
0

exp
,

exp

e
i l i le

i i j i j L
e

i j i j
j

h Jp
l h p j

h Jp

β β
µ ω

β β
−

=

+
= ∀ =

+∑
 

 
so the joint probabilities for all choices may be written as 
 
 

( )
( )
( )

1 1 , ,

, ,
1

, ,
0

,..., , ,

exp

exp

i i

e
I I i j i j

e
i l i l

L
ei

i j i j
j

l l h p i j

h Jp

h Jp

µ ω ω

β β

β β
−

=

= = ∀ =

+

+
∏
∑
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Self-Consistency of Beliefs 
 

Self-consistent beliefs imply that the subjective choice probabilities e
lp  

equal the objective expected values of the percentage of agents in the 

group who choose l , lp , the structure of the model implies that 

 

( )
( )

,
, 1

,
0

exp

exp

i l le
i l l hL

i j j
j

h Jp
p p dF

h Jp

β β

β β
−

=

+
= =

+
∫
∑

 

 

where hF  is the empirical probability distribution for the vector of 

deterministic terms ,i lh .  
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It is obvious that under the Brouwer fixed point theorem, at least one such 
fixed point exists, so this model always has at least one equilibrium set of 
self-consistent aggregate choice probabilities. 
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Characterizing Equilibria 
 

To understand the properties of this model, it is useful to focus on the 
special case where , 0 ,i lh i l= ∀ .  For this special case, the choice 

probabilities (and hence the expected distribution of choices within a 
group) are completely determined by the compound parameter Jβ .   

 
An important question is whether and how the presence of 
interdependencies produces multiple equilibria for the choice probabilities 
in a group.  
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In order to develop some intuition as to why the number of equilibria is 
connected to the magnitude of Jβ , it is helpful to consider two extreme 

cases for the compound parameter, namely 0Jβ =  and Jβ = ∞ .    

 
For the case 0Jβ = , one can immediately verify that there exists a unique 

equilibrium for the aggregate choice probabilities such that 1
lp

L
=  l∀ . This 

follows from the fact that under the assumption that all individual 
heterogeneity in choices come from the realizations of ,i lε , a process 

whose elements are independent and identically distributed across choices 
and individuals.  Since all agents are ex ante identical, the aggregate 
choice probabilities must be equal.   
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The case Jβ = ∞  is more complicated.  The set of aggregate choice 

probabilities 1
lp

L
=  is also an equilibrium if since conditional on these 

probabilities, the symmetries in payoffs associated with each choice that 
led to this equilibrium when 0Jβ =  are preserved as there is no difference 

in the social component of payoffs across choices.   
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However, this is not the only equilibrium. To see why this is so, observe 
that for any pair of choices l  and l′  for which the aggregate choice 
probabilities are nonzero, it must be the case that 

 

( )
( )

exp
exp

ll

l l

Jpp
p Jp

β
β′ ′

=  

 
for any Jβ . This follows from the fact that each agent is ex ante identical.  

Thus, it is immediate that any set of equilibrium probabilities that are 
bounded away from 0 will become equal as Jβ ⇒ ∞ .   
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This condition is necessary as well as sufficient, so any configuration such 

that 1
lp

b
=  for some subset of b  choices and 0lp =  for the other L b−  

choices is an equilibrium.  Hence, for the case where J = ∞ , there exist  
 

1
2 1

L
L

b

L
b=

 
= − 

 
∑  

 
different equilibrium probability configurations.    
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Recalling that β  indexes the density of random utility and J  measures the 

strength of interdependence between decisions, this case, when 
contrasted with 0Jβ =  illustrates why the strength of these 

interdependences and the degree of heterogeneity in random utility interact 
to determine the number of equilibria. 

 
These extreme cases may be refined to produce a more precise 
characterization of the relationship between the number of equilibria and 
the value of Jβ .  
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Theorem.  Multiple equilibria in the multinomial logit model with social 
interactions 
 
For the multinomial logit model with social interactions, assume that 

,  ,i lh k i l= ∀ . Then there will exist at least three self-consistent choice 

probabilities if 1J
L
β

> . 
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Multinomial Choice under Alternative Error Assumptions 
 
The basic logic of the multinomial model is straightforward to generalize.  
This can be seen if one considers the preference structure 

 
1

, , , ,
e

i l i l i l i lV h Jp β ε−= + +    

 
This is the same preference structure we worked with earlier, except that β  

is now explicitly used to index the intensity of choice (in the McFadden 
sense) rather than as a parameter of the distribution of the random payoff 
term ,i lε .  We assume that these unobserved utility terms are independent 

and identically distributed with a common distribution function ( )Fε ⋅ . 
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The probability that agent i  makes choice l  is  
 

( ) ( )
( ) ( )

,0 , , ,0 , ,0

, 1 , , , 1 , , 1

,...,e e
i i l i l i i l i

e e
i L i l i l i L i l i L

h h J p p

h h J p p

ε ε β β
µ

ε ε β β− − −

 − ≤ − + −
 
 − ≤ − + − 
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Conditional on a realization of ,i lε , the probability that l  is chosen is 

 

( ), , , , ,
e e

i l i j i l i j i l
j i

F h h Jp Jpε β β β β ε
≠

− + − +∏  

 
which immediately implies that the probability of the choice l  without 
conditioning on the realization of ,i lε  is 

 

( ), , , , ,
e e

i l i l i j i l i j
j l

p F h h Jp Jp dFε εβ β β β ε
≠

= − + − +∏∫ . 

 
This is a multinomial choice model whose structure is fully analogous to 
the multinomial logit structure developed under parametric assumptions.  
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Under self-consistency, the aggregate choice probabilities of this general 
multinomial choice model are the solutions to  

  

( )l l j l j h
j l

p F h h Jp Jp dF dFε εβ β β β ε
≠

= − + − +∏∫ ∫  

 
As in the multinomial logit case, the compound parameter Jβ  plays a 

critical role in determining the number of self-consistent equilibrium choice 

probabilities lp .  This finding is formalized in. 
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Theorem. Multiple equilibria in the multinomial choice model with social 
interactions  
 
For the multinomial choice model with social interactions, assume that 

,i lh h=  ,i l∀  and ,i lε  are independent across i  and l . There exists a 

threshold T such that if J Tβ < , then there is a unique self-consistent 

equilibrium, whereas if J Tβ >  there exist at least three self-consistent 

equilibria. 
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The relationship between Jβ  and the number of equilibria is less precise 

than was found in the multinomial logit case, as the theorem does not 
specify anything about the way in which L , the number of available 
choices, affects the number of equilibria.   
 
This lack of precision is to be expected since we cannot exploit the error 
distribution structure.  
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Where is Segregation? 
 

Segregation will be manifested in differences in ,h gF  across groups. Note 

that this implicitly involves the distribution of the iX ’s, which can include 

indicators for race, measures of income. Note that in general, one 
expects iX  to affect gY ; much of the social interactions literature as 

assumed that gY  is the average of the within-group iX ’s 

 
A question that has not been studied, at least using the framework I have 
set up, is the relationship between different degrees of segregation on 
various elements of X  and the number of equilibria.  
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What is known is the following. If one segregates individuals so that the 
“fundamentals” are weak ( X ’s near 0), socially inefficient equilibria can 
arise. 
  
Further, if one integrates positive and negative X ’s so as to reduce 
associated  gY  values, then one can move communities from unique 

equilibria into the multiple equilibrium range. 
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Identification 
 

Suppose that  
 
1. 0 g gα = ∀  

 
2. Groups are exogenously determined.  

 
Under these assumptions 
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Theorem. Identification for the multinomial choice model with social 
interactions 
 

Under the normalization 0 0 0 00,  0,   0 , 0k c d J= = = =  and =1β ,  if 
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1. the joint support of ( ),i g iX Y  is not contained in a proper linear 

subspace of r sR +  

2. the support of ( )g iY  is not contained in a proper linear subspace of sR ,  

3. no linear combination of elements of iX  and ( )g iY  is constant,  

4. for each choice l , there exists at least one group lg  such that 

conditional on 
lgY , iX  is not contained in a proper linear subspace of rR ,  

5. none of the elements of ( )g iY  possesses bounded support,  

6. ( ),g i lp  is not constant across groups,  

7. ,i lε , the random utility terms for each individual, are independent of his 

associated iX  and ( )g iY  and independent and identically distributed 

across choices and individuals.  
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the model parameters ( )1 1 1 1 1 1 1 1, , , , , , , ,L L L Lk c d J k c d J− − − −  is identified relative 

to any distinct alternative. 
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What the theorem in essence requires is three things.  
 
First, there must be sufficient intragroup variation within at least one group 

to ensure that lc  is identified l∀ .   

 
Second, there must be enough intergroup variation in ( )g iY  to ensure that 

,lc  ld  and lJ  are identified l∀  because of the nonlinear relationship 

between contextual effects and endogenous effects.   
 

Third, there cannot be collinearity between the regressors contained in iX  

and ( )g iY , so that individual and contextual effects may be distinguished.   
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Simultaneity/Reflection Problem 
 
 

This theorem implies that the so-called reflection problem does not arise. 
The reason is that the system is nonlinear.   
 
On the other hand, it does assume something about network structure 
within groups: unweighted averaging.  Work with Blume, Brock, and 
Jayaraman addresses identification for linear models when network 
structure is only partially observed. No work yet on discrete choice case. 
 
What happens when assumptions 1 and 2 are relaxed? 
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Unobserved Group Effects 
 
 
The import of unobserved group effects depends on the nature of the data 
available. With panel data one can implement variants of differencing to 
address in discrete choice contexts.  
 
However, except for binary choice case, this has not been worked out 
formally for social interactions models. 
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Partial Identification.   
 

For binary choice models, one can develop evidence of social interactions 
for cross-section data even in the presence of group-level fixed effects 
even if one is restricted to cross section data.  (Multinomial choice has yet 
to be studied.) 

 
The reason why cross-section data on binary choices may produce 
evidence in support or against social interactions is that the binary choice 
model can produce multiple equilibria only if endogenous social interaction 
effects are present.  If the available data require the existence of multiple 
equilibria, this in turn implies the existence of endogenous social 
interactions.  
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To develop this argument, we assume that there is random assignment of 
individuals across groups 

 

XX gF F= . 

 
Even for this case, the translation of multiple equilibria into data 
restrictions is somewhat complicated.   

 



  41 

An intuition as to why multiple equilibria are associated with endogenous 
social interactions is that the multiple equilibria can produce what Brock 
and Durlauf refer to as pattern reversals.   

 
Assume that 0d >  so that increasing any element in gY  increases, other 

things equal, the probability that an individual in g chooses 1. One can 
always measure the elements of gY  this way, so long as one knows the 

direction of the effects of its elements).   
 

A pattern reversal occurs for groups g  and g′ if 

 

 and g g g gY Y m m′ ′< > . 
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Recall that gm  can be computed, since it is the conditional expectation of 

the same average of within-group choices gω , so pattern reversals 

represent restrictions on data.   
 

For the identification of social interactions, pattern reversals are important 
because they may derive from the presence of endogenous social 
interactions producing multiple equilibria.   

 
Why?  Intuitively, multiple equilibria can produce a pattern reversal 
because group g can coordinate on a high gm  equilibrium whereas group 

g′ does not so that the effect of the higher value of Y on the average 

outcome in the group is negated. 
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The difficulty with using this heuristic argument is that without any 
restrictions on gα , pattern reversals can occur without multiple equilibria 

being present.  
 

Brock and Durlauf (2007) attempt to identify weak restrictions associated 
with gα  such that pattern reversals imply the existence of multiple 

equilibria and hence endogenous social interactions.   
 

This type of argument does not identify the value of the endogenous social 
interactions parameter J , rather it shows that the value is nonzero and 
large enough to produce multiple equilibria.   

 
As such, it is a form of partial identification.  
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What sorts of assumptions allow for partial identification of J  via pattern 
reversals?   

 
One assumption is a stochastic monotonicity restriction on the group level 
unobservables.  Suppose that if g gY Y ′> , then the conditional distribution of 

unobservables in g′, 
g gY

F
α ′ ′

, is first order stochastically dominated by 
g gY

F
α

.  

 
In this case a pattern reversal will imply that endogenous social 
interactions exist. 



  45 

Another route towards partial identification of social interactions is via 
unimodality versus multimodality comparisons.    

 
Suppose that gY   is constant across groups, iX  is constant across all 

individuals within and across groups and that 0gα = .  In this case, it is 

easy to see that gm  will take on a single value when there are no 

endogenous social interactions and will take one of a finite set of values 
when there are multiple equilibria due to social interactions.   

 

In this case, gm  will be multimodal, with each equilibrium representing a 

possible value. This leads to the intuition that multiple equilibria may occur 
when one relaxes the assumption that gY  and iX  are constant.  
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The translation of this intuition into data restrictions turns out to be fairly 
hard.   

 
One reason for this is straightforward: even if gα  exhibits multimodality, 

then there is no link between multiple equilibria and unimodality of the 
other variables.   
 

The reason for this that the relationship between gm  and gY    is nonlinear 

and this nonlinearity can induce multimodality.   
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Brock and Durlauf (2007) overcome this problem by considering 
g gY m

dF  

rather than 
g gm Y

dF .   

 
Specifically, this paper shows that unimodality of 

g gY
dF

α
implies that there 

must exist a vector π  such that   
 

g gY m
dF

π
is unimodal 

 
if there are no endogenous social interactions.    
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Frontier: Social Interactions and Self-Selection 

   

One does not think of families as being randomly allocated across 
neighborhoods; rather, families choose neighborhoods subject to 
constraints such as rent levels and personal income.  

 
For environments in which self-selection is present, the consistency of 
various statistical methods for estimating social interactions may be 
affected.   
 
Specifically, the presence of self-selection can mean that the expected 

value of the random term iε , conditional on the individual’s characteristics 

and group memberships, may no longer be zero.   
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If one ignores self-selection in estimation, then it is obvious how one can 
produce spurious evidence of social interactions.   
 
For example, if poorer neighborhoods tend to contain relatively less 
ambitious parents than affluent neighborhoods, and if lack of ambition 
leads to lower educational performance by children, then the failure to 
account for this self-selection could lead to the false conclusion that poor 
neighborhoods causally affect education.   
 
Needed: more theory and more econometrics. 
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Comment: control function approach needs to be developed for discrete 
choice with social interactions environments in ways analogous to what 
has been done for linear models. 
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A Nested Choice Approach to Integration of Behaviors and Group 

Memberships 
 
Group memberships may be developed using the nested logit framework 
The basic idea of this framework is the following.  An individual is assumed 
to make a joint decision of a group {0,... 1}g G∈ −  and a behavior 

{0,... 1}l L∈ − . We will denote the group choice of i  as iδ .   

 
The structure of this joint decision is nested in the sense that the choices 
are assumed to have a structure that allows one to decompose the 
decisions as occurring in two stages: first, the group is chosen and then 
the behavior.   
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The key feature of this type of model is the assumption that choices at 
each stage obey a multinomial logit probability structure. For the 
behavioral choice, this means that 

 

( ) ( )
( )

, , , ,
, , , , 1

, , , ,
0

exp
, ,

exp

e
i l g i l ge

i i l g i l g i L
e

i l g i l g
j

h Jp
l h p g

h Jp

β
µ ω δ

β
−

=

+
= = =

+∑
 

 
which is the same behavioral specification as before. Group membership 
choices are somewhat more complicated. In the nested logit model, group 
choices are assumed to obey 

 

( ) ,
, , , ,

,

exp( )
, ,

exp( )
g i ge

i l g i l g
g i g

g

Z
i g h p l g

Z
β

µ
β

∈ ∀ =
∑
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where 
 

, , , , , , ,(max )e
i g l i l g i l g i l gZ E h Jp ε= + +  

 
A standard result (e.g. Anderson, de Palma and Thisse (1992, pg. 46)) is 
that 

 

( )( )
( )

, , , , , , , , ,

1
, , , ,

max , ,

log exp

e e
i l g i l i l g i l g i l g

e
i l g i l g

l

E h Jp h p l g

h Jp

ε

β β−

+ + ∀ =

 
+ 

 
∑

 

 
Combining equations, the joint group membership and behavior 
probabilities for an individual are described by  
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( )

( )

( )
( )
( )

, , , ,

1
, , , ,

, , , ,
1

1
, , , ,, , , ,

0

, , ,

exp log exp exp

expexp log exp

e
i i i l g i l g

e
eg i l g i l g

i l g i l gl
L

ee
i l g i l gg i l g i l g

jg l

l g h p l g

h Jp h Jp

h Jph Jp

µ ω δ

β β β β

ββ β β

−

−
−

=

= = ∀ =

  
+   +  

   ++  
  

∑

∑∑ ∑

 

 
 
Some variants of the choice side of this model have appeared in the 
literature, e.g. Bayer and Timmins (2007), but these have been special 
cases, which ignore two levels of choice, endogenous effects, etc. 
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This probabilistic description may be faulted in that it is not directly 
derived from a utility maximization problem. In fact, a number of papers 
have identified conditions under which the probability structure is 
consistent with utility maximization.  
 
A simple condition that renders the model compatible with a well posed 
utility maximization problem is gβ β≤ , which in essence requires that the 

dispersion of random payoff terms across groups is lower than the 
dispersion in random payoff terms across behavioral choices within a 
group.  
 
Comment: function form assumption relaxation is important for empirical 
work. 
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 Next Steps in this Specification 
 

The model assumes that agents know the values of , ,i l gh  are known to 

agents. However, these will depend on who is a member of each group, 
when the values of gY  depend on with within-group distribution of iX . 

Hence the fixed point problem is qualitatively different from the initial 
environment I described. 
 
This raises a first question as to the specification of an equilibrium 
configuration of individuals across groups. In general, one needs to attach 
prices to the group memberships for existence to be possible. The intuitive 
problem is that two agents may “disagree” as to the desirability of one 
another as fellow group members. 
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Further, the mapping from iX  to gY  may exhibit problems. This is natural if 

the groups are school districts and voting will determine public education 
investment. When a private school option exists, voters may not have 
single peaked preferences over tax rates, which means a voting equilibrium 
does not exist and hence gY  .  

 
Comment: this is an example of a weakness of much of the social 
interactions literature-mechanisms for social influences are not explicitly 
described. 
 
Comment: theoretical urban economics is very hard because of the 
commonality of nonexistence results.  
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Unexplored Possibilities 
 

1. With the exception of an unpublished thesis by Lars Nesheim, there 
has been no systematic investigation of the informational content of 
prices in identification of social effects. Work by Heckman with 
Ekeland, Matzkin, and Nesheim on identification in hedonic prices 
models suggests that this is a natural avenue to explore. 
 

2.  Configurations themselves contain information. Consider the Becker 
discrimination model. It is possible that the wage premium between 
blacks and whites is zero, yet information on discriminatory 
preferences of some employers could be obtained from excess 
segregation of employees across firms. 

 
 


