The Evolution of Belief Ambiguity during the Process of High-School Choice by Pamela Giustinelli and Nicola Pavoni

Discussion by Marco Bassetto

Federal Reserve Bank of Chicago and IFS
December 17, 2015

The Big Picture

- How should we represent information frictions?
- What are their costs?

The Big Picture

- How should we represent information frictions?
- What are their costs?
- What assumptions do we need to make progress?

Some Theory: Simplified Setup

- Two types of high school, "classical" (C) vs. scientific (S)
- Characteristics of S perfectly known (probability of success at S
- Two children, Alice (A) and Beth (B)
- Care about probability of success (finishing high school on time)

Some Theory: Simplified Setup

- Two types of high school, "classical" (C) vs. scientific (S)
- Characteristics of S perfectly known (probability of success at S
- Two children, Alice (A) and Beth (B)
- Care about probability of success (finishing high school on time)
- Set of states of nature: $\Omega_{1} \times \Omega_{2}$
- $\Omega_{1}=\{$ Both pass, Both fail, Only Alice passes, Only Beth passes $\}$
- $\Omega_{2}=$
$\{$ Lots of math, Little math $\} \times\{$ Ancient greek offered, not offered $\} \times$ \{Will be stuck on drawing homework every Sunday morning, not stuck\}

Some Theory: Simplified Setup

- Two types of high school, "classical" (C) vs. scientific (S)
- Characteristics of S perfectly known (probability of success at S
- Two children, Alice (A) and Beth (B)
- Care about probability of success (finishing high school on time)
- Set of states of nature: $\Omega_{1} \times \Omega_{2}$
- $\Omega_{1}=\{$ Both pass, Both fail, Only Alice passes, Only Beth passes $\}$
- $\Omega_{2}=$
$\{$ Lots of math, Little math $\} \times\{$ Ancient greek offered, not offered $\} \times$ \{Will be stuck on drawing homework every Sunday morning, not stuck\}
- Alice and Beth ex ante identical:
- Same prior μ_{0} or set of priors M_{0}
- Probability of success is the same conditional on any $\omega_{2} \in \Omega_{2}$.

Alice and Beth as Bayesians

- Observe A and B 's posterior beliefs at 3 stages, $\mu_{i j}, i=1,2,3$, $j=A, B$
- Evolution of beliefs dictated by learning about $\omega_{2} \in \Omega_{2}$
- Learning may be idiosyncratic, beliefs may be different...
- ... but they should converge if ω_{2} becomes known.

Alice and Beth meet Gilboa and Schmeidler (or Epstein and Schneider)

- A and B have a range of beliefs about success given each ω_{2}.
- A and B have a range of beliefs over which ω_{2} is true.
- Updating: Bayesian belief by belief.
- Belief range should converge as ω_{2} becomes known.
- Convergence might be messy

Example of Messy Convergence

- Alice and Beth have 90% chance of passing if Greek is not part of curriculum
- With Greek, they have no idea (support $[0,1]$)
- Prior: 50% that Greek is offered.
- Prior range: [45\%, 95\%]
- Posterior range: 90% or $[0,1]$

A Way to Make Progress

- Assume that all uncertainty is about learnable characteristics $\left(\omega_{2}\right)$
- or, follow alternative approach to updating (Hansen and Sargent)
- Then range of beliefs will shrink with learning
- Will also converge across A and B in the limit

What can I identify?

- Suppose I have panel with short time dimension, many ex ante identical people with i.i.d. learning process
- Individual learning does not converge, but cross-section informative of true state
- Example: under no ambiguity econometrician learns true probability of success

What can I identify?

- Suppose I have panel with short time dimension, many ex ante identical people with i.i.d. learning process
- Individual learning does not converge, but cross-section informative of true state
- Example: under no ambiguity econometrician learns true probability of success
- For each student, observe belief, choice
- \Longrightarrow Infer preferences
- \Longrightarrow Infer measure of people that made wrong choice

Identification under ambiguity

- Cannot learn true probability in general
- Can get bounds that are tighter than individual students'
- For each student, observe range of beliefs, choice
- \Longrightarrow Set identification of preferences
- \Longrightarrow Bounds on measure of people that made wrong choice

Identification under ambiguity

- Cannot learn true probability in general
- Can get bounds that are tighter than individual students'
- For each student, observe range of beliefs, choice
- \Longrightarrow Set identification of preferences
- \Longrightarrow Bounds on measure of people that made wrong choice
- Might also quantify role of forgetfulness (assuming that it is forgetfulness)

Problem: People are Different

- Try matching over observable characteristics
- Impose monotonicity restrictions (better GPA makes certain schools more desirable)

