Measuring Segregation in a World of Peer Effects

Sonia Jaffe Harvard University and the Becker Friedman Institute

February 2, 2013

Motivation

Why do we care about segregation?

- Neighborhood effects
 - Public goods
 - Opportunities

Motivation

Why do we care about segregation?

- Neighborhood effects
 - Public goods
 - Opportunities
- Peer effects
 - Segregated individuals are influenced by different information and norms.

Motivation

Why do we care about segregation?

- Neighborhood effects
 - Public goods
 - Opportunities
- Peer effects
 - Segregated individuals are influenced by different information and norms.

Want a metric that reflects the latter mechanism

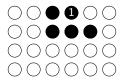
- Segregation increases with
 - the number of one's friends in the group
 - the people by whom one is influenced
 - the Segregation of one's friends
 - how 'in-group' their influence is

This Talk

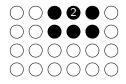
- Example
- Background
- Ø Model
 - Notation
 - Preview of Metric
 - Information Propagation
- Onclusion & Questions

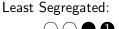
000000

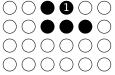
Least Segregated:



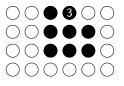
More black friends:

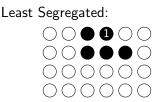




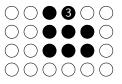


Friends are more segregated:

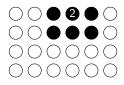




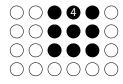
Friends are more segregated:



More black friends:



Most Segregated:



Literature

Most work on segregation uses aggregate measures:

- Empirical work on
 - Mortality (e.g.: Collins and Williams, 1999),
 - Human capital (e.g.: Borjas 1995; Guryan 2004),
 - Employment (e.g.: Kain 1968).
- Theoretical work on:
 - Properties / axioms that generate different metrics (e.g.: Duncan and Duncan 1955; Hutchens 2001),
 - Welfare implications of different metrics (e.g.: Philipson 1993).

This is most closely related to Echenique and Fryer (2007)

- Eigenvector approach gives longrun distribution of weight;
 - Effect doesn't decrease with distance.
- Only uses connections within group.

• Let *n* be the number of individuals;

- Let *n* be the number of individuals;
- Let R be a $n \times n$ matrix of relations:
 - $r_{ij} > 0$ implies that *i* has a relationship with *j*.
 - $\sum_{i}^{j} r_{ij} = 1$, so r_{ij} is j's share of i's relationships.
 - Often we take a matrix R' of dummies for having a relationship and divide each entry by the sum of its row.
- Let *e* be a vector of direct exposure.

- Let *n* be the number of individuals;
- Let R be a $n \times n$ matrix of relations:
 - $r_{ij} > 0$ implies that *i* has a relationship with *j*.
 - $\sum_{i}^{j} r_{ij} = 1$, so r_{ij} is j's share of i's relationships.
 - Often we take a matrix R' of dummies for having a relationship and divide each entry by the sum of its row.
- Let *e* be a vector of direct exposure.
 - Normalize to be between 0 and 1.
 - Often use $R \cdot c$ where c is some characteristic
 - Direct exposure is just the average of one's friends characteristic.
- Let δ a weight between 0 and 1.

- Let *n* be the number of individuals;
- Let R be a $n \times n$ matrix of relations:
 - $r_{ij} > 0$ implies that *i* has a relationship with *j*.
 - $\sum_{i}^{j} r_{ij} = 1$, so r_{ij} is j's share of i's relationships.
 - Often we take a matrix R' of dummies for having a relationship and divide each entry by the sum of its row.
- Let *e* be a vector of direct exposure.
 - Normalize to be between 0 and 1.
 - Often use $R \cdot c$ where c is some characteristic
 - Direct exposure is just the average of one's friends characteristic.
- Let δ a weight between 0 and 1.
 - Can be the 'decay factor,' the ratio of the influence of a friend-of-a-friend to the influence of a friend.

Metric

Segregation, s, along the characteristic of c, with decay factor δ is:

$$egin{aligned} s^c =& (1-\delta)(Rc+\delta R^2c+\delta^2 R^3c\ldots)\ =& (1-\delta)Rc+\delta R\cdot s\ =& (1-\delta)(\mathcal{I}-\delta R)^{-1}Rc \end{aligned}$$

- $R \cdot c$ is the *direct exposure*.
- $R \cdot s$ is the *indirect exposure*.

Metric

Segregation, s, along the characteristic of c, with decay factor δ is:

$$\begin{split} s^{c} &= (1 - \delta)(Rc + \delta R^{2}c + \delta^{2}R^{3}c \dots) & \text{recursive sum of effects} \\ &= (1 - \delta)Rc + \delta R \cdot s & \text{weighted avg of direct and indirect} \\ &= (1 - \delta)(\mathcal{I} - \delta R)^{-1}Rc & \text{explicit formula} \end{split}$$

- $R \cdot c$ is the *direct exposure*.
- $R \cdot s$ is the *indirect exposure*.

Model

A reduced form model of information flows:

- Information dissemination
 - Individual *i* receives a piece of information;

(the existence a job opening)

- He passes it to j with probability r_{ij};
- With probability δ, j passes it along (using wieghts r_{jk}); (with probability (1 - δ), j applies for the job)
- The process continues;
- Segregation s^c_i is the prob the information ends with someone in group c;

(someone from c applies for the job).

- Information Search
 - Individual *i* wants the answer to a question;
 - (Is going to college worthwhile?)
 - Each agent has an answer with probability 1δ ;
 - With probability *r_{ij}*, *i* asks *j*;
 - If j has an answer, he tells i,
 - ("Yes, my brother's making a fortune on Wall Street")
 - Otherwise, he passes the question along and then passes back whatever answer he receives;
 - Segregation s^c_i is the probability that *i* gets an answer from someone in group c;

- Information Search
 - Individual *i* wants the answer to a question;
 - (Is going to college worthwhile?)
 - Each agent has an answer with probability 1δ ;
 - With probability *r_{ij}*, *i* asks *j*;
 - If j has an answer, he tells i,
 - ("Yes, my brother's making a fortune on Wall Street")
 - Otherwise, he passes the question along and then passes back whatever answer he receives;
 - Segregation s^c_i is the probability that *i* gets an answer from someone in group c;

For *i* passively receiving information, use "incoming relationship" matrix, R^{T} .

- Signal Aggregation
 - Each individual gets a signal e_i

(Estimate of the return to education)

- Each agent's opinion gives weight (1δ) to their own signal and weight δ to the weighted average of their friends opinions
- Everyone shares opinions and updates opinions until each opinion converges.
- The final opinions are

$$\tilde{s}^e = (1-\delta)(\mathcal{I}-\delta R)^{-1}e.$$

If signals vary by groups then

$$ilde{s}^c = (1-\delta)(\mathcal{I}-\delta R)^{-1}c$$

gives the extent that each agent is affected by the signals of group c.

Can also think about overexposure

- Let \bar{a} be a vector the same length as a with all entries equal to the mean of a.
- The extent that individuals are more exposed than expected to group *c* is

$$\hat{s}^c = (1-\delta)(\mathcal{I}-\delta R)^{-1}(R\cdot c-ar{c}) = (1-\delta)(\mathcal{I}-\delta R)^{-1}R\cdot c-ar{c}.$$

Extensions

What are other interesting questions

- Correlation across types of segregation
 - Try to reject "racial segregation can be explained by income segregation"

$$E[S_a|R,b] = (1-\delta)(\mathcal{I}-\delta R)^{-1}(RE[a|b]).$$

• Test for homophily

$$S_r - E[S_r | R, I] = \beta_0 + \beta_1 S_I.$$

• Using test scores/income

Conclusion and Questions

- A metric of segregation motivated by peer effects.
- Based on a model of information flows through networks.

Using the metric

- Bringing to data: Add Health /census
- For what effects is this the right metric of segregation?
- What interventions would/should target this type of segregation?
 - If people don't think about information flows when choosing friends, are they over-segregating?
 - What about the informational externalities on their friends?