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A3. Appendix to Section 3

Monetizing and Aggregating the Life-Cycle Benefits and Costs of PPP

A3.1 Details on Treatment-Effect Estimators

We provide a formal discussion on the estimators that we use in the paper, using the nota-

tion defined there. We define some additional notation to express our results formally. Let

a ∈ A = {a, a + 1, . . . , a} denote the ages of Perry participants between age a (treatment

start) and a (the end of the life cycle) and let P index the unique identifiers of each of the 123

Perry participants. We partition P into index sets for the treatment and control groups, P1

and P0 respectively. Recall that we use the switching-regression notation of Quandt (1958,

1972) to denote outcome j ∈ J at age A as Yj ,a = D · Y 1
j ,a + (1− D) Y 0

j ,a . We drop the

outcome index henceforth for brevity, and we introduce an individual index to make some

of the calculations explicit.

Mean-Difference Estimator. The mean difference (MD) estimator assumes that missing

data occur randomly. We define it as

Π̂md :=
∑

a

∑
i∈P1

1

Na,1,1
βa−3Ri ,aY 1

i ,a −
∑

a

∑
i∈P0

1

Na,0,1
βa−3Ri ,aY 0

i ,a , (A.1)

where Ri ,a = 1 indicates that the relevant variable is observed and Ri ,a = 0 indicates that

it is not. Note that Equation (A.1) is numerically equivalent to Equation (4) by the Frisch-

Waugh-Lovell (FWL) theorem. We denote realizations of Ri ,a as r and realizations of Di

as d . Na,d ,r is the number of observations in treatment status d observed at age a. Π̂md

is a consistent estimator of the average treatment effect (ATE) under random assignment

of treatment (RA). That is, {Y 1
i ,a ,Y

0
i ,a} |= D ∀i ∈ P , a ∈ A. The MD estimator attaches

equal weight to all of the components of averages of the outcomes across ages, and therefore
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corrects for general age-driven patterns of missing data over the life-cycle.1 For the MD, we

hence assume {Y 1
i ,a ,Y

0
i ,a} |= Ri ,a ∀i ∈ P , a ∈ A (MAR I).

The MD is a baseline estimator. However, the randomization protocol of PPP only justifies

conditional random assignment. We use an OLS estimator to account for compromises in

the randomization protocol. We run a pooled regression of the outcome variable Yi ,a on a

vector of baseline variables, Zi , and on age indicators interacted with treatment status. We

denote the slope vector associated with Zi by γ. We correct Yi ,a for compromises in the

randomization protocol and missingness patterns depending on Zi by forming Yi ,a − γ̂′Zi ,

and use this quantity instead of Yi ,a in the formula for the MD estimator. This linear

regression based correction removes an individual effect γ′Zi correlating with assignment

and missingness patterns. The OLS estimator is consistent and unbiased for the ATE given

conditional random assignment {Y 1
a ,Y

0
a } |= D

∣∣ Z (CRA), missingness at random condi-

tional on age and Zi , Ra |= {Y 1
a ,Y

0
a ,D}

∣∣ Z (MAR II) and the specification assumption

E[Y d
a

∣∣ R = 1,D = d ,Z ] = αa,d + γ′Z ,∀a ∈ A (SOLS).

We also consider an augmented inverse probability weighting (AIPW) estimator. Compared

to OLS, this estimator allows treatment assignment and missing data patterns to depend on

Zi in a more general fashion, by relaxing specification assumptions. We assume CRA and

MAR II and make the specification assumption E[Y d
a

∣∣ R = 1,D = d ,Z ] = αa,d +γ′a,d Z or

P(Ra = 1,D = 1
∣∣ Z ) = Λ

(
[1,Z ′]ωR

a

)
Λ
(
[1,Z ′]ωD

a

∣∣ Ra = 1
)

(SAIPW). Here, Λ denotes the

Logit function, [1,Z ′] denotes the row vector of baseline covariates concatenated with 1, and

ωR
a , ω

D
a ∈ Rdim(Z ). The fact that only one of the two preceding equations needs to hold is also

known as double robustness, an appealing property of the AIPW estimator.2 We construct

AIPW estimates as follows. We let Ŷi ,a be an estimate of E[Yi ,a

∣∣ Zi ,Di ,Ri ,a = 1], the

1It considers the ages sampled in our data, not all possible ages that could be sampled (i.e., it assigns
zero probability to ages not sampled in our data).

2Note, however, that the AIPW estimator is, in contrast to MD and OLS, not unbiased.
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expected outcome of i at age a, conditional on treatment status, non-missing data, and Zi .

Additionally, the AIPW estimator uses estimates φ̂d
i of φd

i := P(Di = d
∣∣ Zi ) (i.e., the

i -th participant’s propensity of being in the treatment status d and λ̂d
i ,a), an estimator of

λd
i ,a := P(Ri ,a = 1

∣∣ Zi ,Di = d), the propensity of having a non-missing outcome after

fixing treatment status Di to d ∈ {0, 1}. The estimator is

Π̂aipw =
1

NP

∑
i∈P

∑
a

β−3
(
θ̂1

i ,a − θ̂
0
i ,a

)
, (A.2)

where

θ̂d
i ,a := Ŷ d

i ,a +
1{Ri ,a = 1,Di = d}

λ̂d
i ,a φ̂

d
i

(
Y d

i ,a − Ŷ d
i ,a

)
,

and where 1(·) is the indicator function. This AIPW estimator is doubly robust: either

correct specification of (1) the propensity score models for φ̂d
i ,a and λ̂d

i ,a or (2) the model

for Ŷ d
i ,a for d ∈ {0, 1} implies consistency. The imputation scheme of the AIPW estimator

allows us to choose outcome-domain specifications of Ŷ d
i ,a . In particular, we can model cen-

sored outcome variables explicitly.

Table A3.1 summarizes the requirements for each estimator to be consistent. The proof of

consistency of the MD estimator is straightforward. We provide proofs of consistency for

OLS and AIPW next.

A3.1.1 Proof of Consistency of the OLS Estimator

First, make assumption SOLS. Then, we can write Y d
a = α(a, d) + γ′Z + e(a, d). For fixed

age and treatment status, α(a, d) is a constant, γ is a slope vector, and e(a, d) is a stochastic,

zero mean error. Because of CRA and MAR II, E[e(a, d)
∣∣ R,D ,Z ] = 0 holds. Using

the switching regression framework Ya = DY 1
a + (1 − D)Y 0

a we rewrite the specification

3



Table A3.1. Assumptions Required For Consistency of Each Estimator Family

Estimator

Assumption (for all a ∈ A) MD OLS AIPW

Missing-Data Assumptions

MAR I Ra |= {Y 1
a ,Y

0
a ,D}

MAR II Ra |= {Y 1
a ,Y

0
a ,D}

∣∣ Z

Treatment Assignment Assumptions

RA (Y 1
a ,Y

0
a ) |= D

CRA (Y 1
a ,Y

0
a ) |= D

∣∣ Z

Specification Assumptions

SOLS E[Y d
a

∣∣ R = 1,D = d ,Z ] = αa,d + γ′Z

SAIPW E[Y d
a

∣∣ R = 1,D = d ,Z ] = αa,d +γ′a,dZ or P(Ra =

1,D = 1
∣∣ Z ) = Λ

(
[1,Z ′]ωR

a

)
Λ
(
[1,Z ′]ωD

a

∣∣ Ra = 1
)

Overlap Assumptions

Overlap D Common covariate support of treatment and control
group. 1− ε > E[D

∣∣ Z ] > ε for some ε > 0, all Z .

Overlap R Common covariate support of population with miss-
ing and non-missing observations. E[R

∣∣ Z ] > ε for
some ε > 0, all Z .
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equation into the linear regression equation

Ya = α(a, 0) + ∆aD + γ′Z + e(a),

where we let ∆a := (α(a, 1)−α(a, 0)) and e(a) := e(a, 0)D+e(a, 0)(1−D), and E[e(a)
∣∣D ,Z ] =

0 holds. We estimate γ using linear regression of the pooled sample of outcomes (Yi ,a)i∈P,a∈A

on Zi , Di and a full set of age dummies interacted with D and the intercept. We write

Yi ,a − γ̂Zi =


op(1) + α(a, 0) + e(a)i if Di = 0

op(1) + α(a, 1) + e(a)i if Di = 1,

(A.3)

where e(a)i may be heteroskedastic and correlated or clustered within households. Therefore,

substituting Yi ,a−γ̂Z for Yi ,a in the MD formula yields (dropping discount rates for brevity

and with Na,d ,r defined as before)

Π̂ols =
∑

a

∑
i∈P1

1

Na,1,1
Ri ,a(Y 1

i ,a − γ̂
′Zi )−

∑
a

∑
i∈P0

1

Na,0,1
Ri ,a(Y 0

i ,a − γ̂
′Zi ), (A.4)

and consistency follows from

∑
i∈Pd

1

Na,d ,1
Ri ,a(Y d

i ,a−γ̂
′Zi ) = op(1)+E

[
α(a, d) + e(a)i

∣∣ D = d ,Ra = 1
]
+

∑
i∈Pd

Ri ,a

Na,d ,1
op(1)

 .
The last term converges quickly as it is of stochastic order op(

√
Na,d ,1

−1
) and can therefore

be ignored in variance calculations. We then use E
[
α(a, d)

∣∣ D = d ,Ra = 1
]

= α(a, d) and

form α(a, 1)− α(a, 0) =
(
E[Y 1

a ]− γ′E[Z ]]
)
−
(
E[Y 0

a ]− γ′E[Z ]]
)

= E[Y 1
a − Y 0

a ]. Therefore,

Π̂ols sums consistent estimates of age-wise treatment effects, which implies consistency of

Π̂ols.
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A3.1.2 Proof of Double Robustness of the AIPW Estimator

In the following discussion, we ignore Di for simplicity, given that we assume that Di is

randomly assigned conditional on Zi .

Let λ̂i ,n = p(Zi ) + op(1) and Ŷi ,n = m(Zi ) + op(1) for some functions Zi 7→ p(Zi ) ∈

(ε, 1], some ε > 0 (p(·) is bounded away from zero) and Zi 7→ m(Zi ) ∈ R. Define

θ̂n = n−1∑n
i=1 θ̂i ,n , where θ̂i ,n = Ŷi ,n + (Ri/λ̂i ,n) (Yi ,n − Ŷi ,n). The next assumption

states that either the model for λ̂i ,n or the model for Ŷi ,n or both are correctly specified.

Specification Assumption. p(Zi ) := E[Ri

∣∣ Zi ] or m(Zi ) := E[Yi

∣∣ Zi ] (or both) hold.

(This assumption is a general version of SAIPW, leaving the concrete specification of m and

p open.)

Proposition. If MAR II, CRA, SAIPW hold, then θ̂n = E[Yi ] + op(1).

Proof. Note that θ̂n = [n−1∑n
i=1 m(Zi ) + (Ri/p(Zi )) (Yi −m(Zi ))] + op(1), and so

θ̂n = E[m(Z ) + R
p(Z )

(Y −m(Z ))] + op(1) (A.5)

= E[E[m(Z ) + R
p(Z )

(Y −m(Z ))
∣∣ Z ]] + op(1)

= E[m(Z ) + 1
p(Z )

E[R Y
∣∣ Z ]− E[R

∣∣ Z ]

p(Z )
m(Z )] + op(1)

(MARII )
= E[m(Z ) +

E[R
∣∣ Z ]

p(Z )
E[Y

∣∣ Z ]− E[R
∣∣ Z ]

p(Z )
m(Z )] + op(1)

= E[m(Z ) +
E[R

∣∣ Z ]

p(Z )
(E[Y

∣∣ Z ]−m(Z ))] + op(1).
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If the propensity score model is correctly specified, i.e., p(Z ) := E[R
∣∣ Z ], then

θ̂n = E[m(Z ) +
p(Z )
p(Z )

(E[Y
∣∣ Z ]−m(Z ))] (A.6)

+ op(1) = E[E[Y
∣∣ Z ]] + op(1) = E[Y ] + op(1).

If the regression model is correctly specified, i.e., m(Z ) := E[Y
∣∣ Z ], then

θ̂n = E[E[Y
∣∣ Z ] +

E[R
∣∣ Z ]

p(Z )
(E[Y

∣∣ Z ]− E[Y
∣∣ Z ])] (A.7)

+ op(1) = E[E[Y
∣∣ Z ]] + op(1) = E[Y ] + op(1).

Under our specification assumption, p(Z ) := E[R
∣∣ Z ] or m(Z ) := E[Y

∣∣ Z ]. Therefore,

θ̂n = E[Y ] + op(1).

Note that our proposition can be applied without loss of generality to the crime AIPW

estimator described in the main text. To see why, index all variables (except for Zi ) with a

fixed superscript d ∈ {0, 1} in the assumptions and the theorems above.3 Similar changes

occur to the notation in the other assumptions and results.

Then, the modified Theorem 1 implies that θ̂d
n = E[Y d

i ] + op(1) under our assumptions.

Therefore, θ̂1
n − θ̂0

n = E[Y 1
i − Y 0

i ] + op(1), proving that the crime AIPW estimator of the

treatment effect is doubly robust to certain forms of misspecification.

A3.1.3 Estimation of AIPW Conditional Expectations and Probabilities

Recall that Ŷ d
i ,a is an estimate of E[Yi ,a |Zi ,Di = d ,Ri ,a = 1] for d ∈ {0, 1} for individual

i ∈ P at age a. At some ages, the variation in the dependent variable, Yi ,a , may be too little

3These assumptions follow because, for the original AIPW estimators of the treatment effect, we assume
that (C d

i ,Y
d
i ) |= Di

∣∣ Zi and (Ci ,Yi ) |= Ri

∣∣ Di ,Zi . In other words, (C d
i ,Y

d
i ) |= 1(Di = d)

∣∣ Zi , while

(C d
i ,Y

d
i ) |= Rd

i

∣∣ Zi .
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to reliably estimate the desired conditional expectation function. If we used observations at

age a only, an estimation may fail in bootstrap samples. Estimating the desired conditional

expectation pooling all ages may introduce bias since that assumes the expected outcome,

conditional on covariates Zi (and with fixed treatment and no missing-data status) to be age

invariant. As a middle ground, we estimate weighted regressions. The weights are obtained

from a normal density kernel. Given age a, the weights attached to adjoining observations at

ages a± k , k = 0, 1, 2, ... are φ
(
|k |
bl

)
, where bl is a bandwidth parameter specific for each do-

main. Estimation results are insensitive to the choice of the bandwidth. We use a bandwidth

of 1 for crime and a bandwidth of 4 for income. We use no weighting in health and education.

We define Ŷ d
i ,a as the prediction of Y d

i ,a derived from some regression model of Y d
i ,a on Zi

in the (alive) population {i ∈ P : Di = d ,Ri ,a = 1}. The regression model Y d
i ,a is specified

according to each domain that we consider.

We account for the PPP participants who have died at some age a ∈ A by excluding

them from the estimation sample for Ŷ d
i ,a when predicting outcomes of their living peers.

Among participants, mortality was high (12%), with 10% mortality in the treatment and 14%

mortality in the control group. Generally, the outcome Yi ,a is nil for deceased individuals.

Formally, let Di ,a be an indicator for whether individual i at age a is deceased. In all

preceding and following considerations, Di ,a can be interpreted as a variable in Zi ,a (adding

an age index to Zi ), without loss of generality. All our models for missing-data probabilities

build on a penalized Logit specification in Greenland and Mansournia (2015) mixed with

unit probability for deceased individuals.4 For instance, consider the missing-data model for

4Using the penalized Logit regression in Greenland and Mansournia (2015) guarantees that the Logit
model remains estimable even if, for some ages, there is little variation in covariates and outcomes. Penal-
ization is derived from imposing a log [F (1, 1)] prior on each coefficient in the Logit model. The advantages
of this prior are 1) finite estimates on all coefficients even with perfect separation, 2) it constitutes a direct
bias reduction method, and 3) it is easy to implement via a simple data augmentation.
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Ri ,a for felonies. We estimate

λ̂d
i ,a = (1−Di ,a) + Di ,a Λ̂(Ri ,a

∣∣ Zi ,Di ,a = 0,Di = d)

where Λ̂(Ri ,a

∣∣ Zi ,Di ,a = 0,Di = d) is a penalized Logit specification with covariates Zi ,

estimated in the sample of non-deceased individuals with treatment status d .

A3.1.4 Selecting Treatment-Effect Age Ranges Using LASSO

Our preferred set of results exclude treatment effects on labor income and crime after age

40. After age 40, the treatment-effect estimates are minimal in magnitude and do not differ

from 0 statistically. Including them increases the variance of our life-cycle estimates. We

justify the age-40 cutoff using a least-absolute shrinkage and selection operator (LASSO)

generalization of Equation (4). We vary the penalty parameter λ away from the OLS solu-

tion (λ = 0), until the LASSO selects no age-wise treatment-effect components. We penalize

the estimator for including coefficients δ1
j ,a 6= 0 for a large number of ages a ∈ A, but apply

no penalty to the age intercepts δ1
j ,a 6= 0. Figure A3.1 plots the order in which LASSO picks

up the explanatory variables and associates coefficients δ1
j ,a 6= 0. The age-40 cutoff is clear.

A3.1.5 Estimating the Internal Rate of Return

We use an approximation method to estimate internal rates of return of PPP. Using the

estimators described above, we estimate the present value of the program’s life-cycle total

benefits (PV) for a grid of discount rates, ρ ∈ {0, 1/100, . . . , 20/100}. For every discount rate

ρ, we obtain PV(ρ). We approximate the first derivative of PV at some ρ0 by PV′(ρ0) ≈

[PV(ρ0) − PV(ρ0 − 1)]/0.01. Applying the same formula, we approximate PV′′(ρ0) and

PV′′′(ρ0). Suppose that for ρ0 < ρ1 = ρ0 + 0.01 we have PV(ρ0) ≥ C ≥ PV(ρ1), where C

9



Figure A3.1. LASSO Coefficients L1-Norm vs Included Ages
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Notes: The x -axis shows the ages at which treatment effects were measured. The y-axis displays the L1–
norm of the standardized coefficient vector in a LASSO regression when varying the penalty parameter (λ).
Dark sections indicate inclusion of age-wise treatment effects if the LASSO produces a given L1–norm. Higher
L1 values correspond to lower penalties and a LASSO more similar to the OLS solution. The dashed line
displays median L1–norm at variable inclusion, applicable to age ranges up to 40 and past 40, respectively.
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is the total program cost of PPP. We calculate a third-degree Taylor expansion about ρ0 and

about ρ1. We approximate the PV on the interval (ρ0, ρ1) by taking a weighted average of

the two Taylor expansions. The weights are the inverse distance of the approximation point

ρ to the respective expansion points, ρ0 and ρ1. Our estimate of the internal rate of return

of PPP is the ρ∗ for which the approximated PV-curve equals C .

A3.2 Details on Inference Procedures

In all of our inference procedures, we cluster at the household level, defining households

as individual-sibling clusters, and stratifying to keep the size of the treatment and control

groups constant.

Our main inference is based on bias-corrected accelerated confidence intervals (BCAs). In

Table 4 we invert these confidence intervals to obtain their associated p-values. Throughout

the paper, we also provide bootstrap standard errors. For our MD and OLS estimates we

provide simple bootstrap standard errors. For our AIPW estimates we provide trimmed

bootstraps standard errors. We justify these choices below. Table 4 shows that the inference

based on BCAs or based on analytic, simple bootstrap, trimmed bootstrap, or studentized

bootstrap p-values is very similar across estimates obtained using our different estimators.

All of the bootstrap inference procedures account for sampling variation in all estimation

stages (i.e., we form the bootstrap distributions of our estimates by computing all of the

stages required by our estimators in each draw). We also account for simulation or forecasting

error in our health predictions as explained below. We provide details on each of our inference

procedures next.
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A3.2.1 Bias-Corrected Accelerated Bootstrap Confidence Intervals

We construct the BCAs as indicated in Efron (1987). Hansen (Chapter 10.18, 2021) provides

additional discussion. The BCAs are fully non-parametric, but they are computationally in-

tensive partly because they require the estimation of two parameters. First, a measure of

small-sample median bias. This is the standard correction parameter in bias-corrected in-

ference procedures. Second, a measure of skewness of the distribution of the parameter of

interest. This feature is specific to the BCAs and it enables accounting for skewness in

outcome distributions. The advantage of the inference provided by the BCAs with respect

to other methods like bias-corrected percentile-t (or studentized) bootstrap confidence in-

tervals is that it explicitly accounts for skewness as a small-sample anomaly. Inspection of

bootstrap distributions indicates that skewness is present in the present value of some of

our outcomes, especially when using the AIPW estimator. We choose BCAs for our main

inference because they allow us to deal explicitly with small-sample size and skewness. Fur-

thermore, BCAs and percentile-t bootstrap inference, which we discuss below, provide an

asymptotic refinement compared to traditional inference methods. This refinement makes

them the most accurate inference methods we employ.

Let (Y ,X )i denote the outcomes and covariates of PPP participant i ∈ I at all of the

observed ages, where I is the index set for the PPP participants. The covariates include all

of their information in each of their observed ages (i.e., baseline characteristics, treatment

status, missing-data indicators). We partition individuals into their households (i.e., form

sibling tuples). We let P index households and (Y ,X )h denote the outcomes and covariates

of PPP participant household h ∈ P . Our step-by-step bootstrap procedure to form the

empirical bootstrap distribution of estimator θ is the following:

1. Draw b = 1, . . . ,B bootstrap samples (Y ,X )b
h with replacement with the restriction

of keeping the size of the treatment and control groups constant across draws. In this
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and all bootstrap procedures in the paper we set B to 1,000.

2. For each b = 1, . . . ,B , decompose (Y ,X )b
h into the individual information of the

household participants. This enables forming (Y ,X )b
i for i ∈ Ib where Ib indexes

individuals in bootstrap sample b.

3. For each b = 1, . . . ,B , estimate all preliminary stages (e.g., weighting scheme for

AIPW estimates).

4. For each b = 1, . . . ,B , estimate main parameter. Denote it by θ̂b .

5. Form empirical bootstrap distribution θ̂1, . . . , θ̂B .

Health Outcomes: A Special Case. Our health outcomes are based on modeling and

simulation as explained in Section 3.6. We expand the bootstrap-sampling procedure to ac-

count for forecasting error in the simulated outcomes. Our step-by-step bootstrap procedure

forms the empirical bootstrap distribution of estimator θ which contains a health outcome

is the following.

1. Recall that for each i ∈ I at age a ∈ A we have 1,000 simulated health outcomes.

The point estimate for any health outcome is the average across the 1,000 simulated

outcomes. We form the individual and age-specific vector of residuals for each health

outcome by forming the deviation of simulated outcome s = 1, . . . , S from the out-

come’s point estimate. Let Ei ,a denote the vector storing these residuals for i ∈ I at

age a ∈ A. This vector stores an individual and age specific empirical distribution of

outcome forecasting error.

2. Draw b = 1, . . . ,B bootstrap samples (Y ,X )b
h with replacement with the restriction

of keeping the size of the treatment and control groups constant across draws.

3. For each b = 1, . . . ,B , decompose (Y ,X )b
h into the individual information of the

household participants. This enables forming (Y ,X )b
i for i ∈ Ib where Ib indexes
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individuals in bootstrap sample b.

4. For i ∈ Ib at age a ∈ A, draw a residual from Ei ,a for each health outcome and add

it to its point estimate.

5. For each b = 1, . . . ,B , estimate all preliminary stages (e.g., weighting scheme for

AIPW estimates).

6. For each b = 1, . . . ,B , estimate main parameter. Denote it by θ̂b .

7. Form empirical bootstrap distribution θ̂1, . . . , θ̂B .

A3.2.2 Simple Bootstrap Standard Errors and p-values

The simple bootstrap standard errors are the standard deviations of the empirical bootstrap

distributions (which we construct as explained above). We calculate the p-values associated

with simple standard errors using t-statistics.

A3.2.3 Trimmed Bootstrap Standard Errors and p-values

The trimmed bootstrap standard errors are the standard deviations of the trimmed empirical

bootstrap distributions. After obtaining the empirical distributions as explained above, we

trim the top 1.0% and bottom 1.0% before computing the standard errors. We use trimmed

bootstrap standard errors for AIPW (not for MD or OLS). The AIPW relies on the

propensity score and age-wise estimates of the no missing-data probabilities. In bootstrap

samples, support conditions for either estimation procedure may not be satisfied, leading to

extreme probability weights and bootstrap distributions with non-finite second moments (see

Seaman et al., 2013). Such failure of simple bootstrap standard errors is indicated if inference

on simple bootstrap standard errors and other methods (e.g., analytic standard errors, BCA

p-values, studentized bootstrap p-values) sizably disagree. Chapter 10 of Hansen (2021)

notes that the trimmed bootstrap leads to more reliable standard errors (given that the
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trimming parameter vanishes as sample size tends to infinity). Note that we do not apply

trimming to any other estimator. We highlight significance levels with respect to BCAs, not

with respect to trimmed bootstrap standard errors. We calculate the p-values associated

with trimmed standard errors using t-statistics.

A3.2.4 Percentile-t or Studentized Bootstrap p-values

An alternative non-parametric p-value is based on the studentized empirical bootstrap distri-

butions as in Heckman and Karapakula (2019, 2021), also known as percentile-t bootstrap.

Like the BCAs, the percentile-t method provides an asymptotic refinement. However, our use

of analytic standard errors for studentization makes this method not fully non-parametric.

Its p-values are calculated from the empirical bootstrap distribution of the t-statistic associ-

ated with the null hypothesis to be tested. We calculate studentized p-values as the fraction

of draws in which the sampled statistic is more extreme (with respect to the null hypothesis)

than the statistic in the original sample.

A3.2.5 Analytic Standard Errors by Outcome

For the OLS and AIPW estimators, the sampling variation from correctly specified prelim-

inary estimation stages does not matter asymptotically (there are no preliminary estimation

stages in MD). Hence it suffices to consider p-values calculated from final-stage regressions.5

We calculate analytic standard errors allowing for general heteroskedasticity and arbitrary

correlation within households. We calculate asymptotic analytic p-values based on the corre-

sponding analytic standard errors. We use clustered standard errors robust to heteroskedas-

ticity as in Liang and Zeger (1986), with a simple multiplicative degrees-of-freedom bias

adjustment. Preliminary calculations indicate that alternative robust small-sample meth-

5The variance of the AIPW estimator is not doubly robust. We ignore this potential issue for analytic
standard errors to keep things simple and highlight additional results, presented in Section 4, with respect to
bootstrapped p-values, which are asymptotically correct even under misspecification of one of the first-stage
models.
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ods as those in Bell and McCaffrey (2002) and Imbens and Kolesar (2016) yield virtually

identical results. Such methods include improved bias adjustments and adjusted reference

distributions for confidence intervals and p-values.

Let Q be the design matrix of the regression in Equation (4). We estimate the variance of

the estimated coefficients by computing

V̂md = (QQ ′)−1

∑
h∈H

Q ′h ε̂ε̂
′Qh

 (QQ ′)−1.

This is the cluster-robust standard error procedure of Liang and Zeger (1986). H is the set of

all households in the study, and (Qh , ε̂h) are the portions of the design matrix and residual

vector that correspond to household h. The corresponding variance estimates V̂ols for the

OLS adjusted estimator and V̂aipw for the AIPW are constructed analogously.

There are various bias-adjustment methods for clustered standard errors. We performed pre-

liminary exercises using the methods in Bell and McCaffrey (2002) and Imbens and Kolesar

(2016), which did not produce notable differences in our baseline standard-error estimates.

Imbens and Kolesar (2016) suggest using 1) a bias improved estimator of the variance-

covariance matrix, V̂BM , as in Bell and McCaffrey (2002), and 2) comparing t-statistics of

the kth coefficient relevant parameter to a t-distribution with K degrees of freedom, where K

is calculated so that the distribution of the squared t-statistic of the kth estimated coefficient

fits the first two moments of a χ2(K ) distribution. Neither approach makes a difference in

our case. One minor degrees-of-freedom adjustment that we make is multiplying estimates

V̂md , V̂ols and V̂aipw by the factor
N − 1

N − L

S

S − 1
, where L denotes the number of estimated

parameters in the model and S the number of clusters (households). We calculate p-values

using the quantiles of the standard normal distribution.
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A3.2.6 Analytic Standard Errors of Aggregate Estimator, Π̂Σ

To simplify our algebra, we note that the MD estimator can be written as the weighted sum

of observations, Π̂md = W ′Y, where

W = (wi )
|P|
i=1, wi =

(2Di − 1)Ri ,a

Di Na,1,1 + (1− Di )Na,0,1

and Na,d ,r = |{i ∈ P : Ri ,a = r ,Di = d}|. The same weights are used to construct

Π̂ols = W ′(Y − γ̂′Z), and weights for the AIPW estimator are given by wi = 2Di/|P|,

where Π̂aipw = W ′(θ̂1 − θ̂0).

The variance of Π̂Σ, VΣ, can be broken down into the variances of the estimators of individual

domains j , Vj , and the covariances between them, V
j ,̃j
, j , j̃ ∈ J . We can write any of our

estimators constructed for domain j as a weighted sum of Ui ,a , where Ui ,a is either the

observed outcome (MD), the regression adjusted observed outcome (OLS), or the imputed

individual treatment effect (AIPW) for individual i at age a, depending on the estimator.

Therefore, V
j ,̃j

yields (in vector notation)

V
j ,̃j

= Cov
(
W ′U, W̃ ′Ũ

∣∣ D
)

= W ′E[εε̃′]W̃

with disturbances ε and ε̃ corresponding to domains j and j̃ , respectively. We estimate this

quantity using the cluster-robust estimator

V̂
j ,̃j

:=
∑
h∈H

∑
i∈h

∑
j∈h

w̃i
̂̃εj ε̂j wi ,

which is consistent if N d/N → cd ∈ (0, 1), d ∈ {0, 1}, H /N := |H|/N → cH ∈ (0, 1) as

N →∞ and |g | ≤ cG for all h ∈ H, N ∈ N.6

6Note that wi and εj or w̃i and ε̃j may also be vectors of fixed, finite dimension. Hence, the same
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Proof. For each estimator, the assumptions on N d/N ensure that (w̃i ε̃j H ) is an Op(1) ran-

dom variable, and so is (wiεj H ), as N →∞. Because |h| is bounded, Zh :=
∑

i∈h

∑
j∈h(w̃i ε̃j H )·

(wiεj H ) is Op(1), too. Furthermore, Zh = op(1) +
∑

i∈h

∑
j∈h(w̃i

̂̃εj H )(wi ε̂j H ), by consis-

tency of the estimators under their respective assumptions. Hence,

H V̂
j ,̃j

= HH−2
∑
h∈H

Zh + op(1) (A.8)

= op(1) + E(Zh).

Likewise, we have that (again, cluster subscripts indicate observations corresponding to that

cluster only)

W ′E[εε̃′]W̃ = E

∑
h∈H

W̃ ′
h ε̃hε

′Wh

 (A.9)

= HE
[
W̃ ′

h ε̃hε
′Wh

]
= HE

[
H−2Zh

]
= H−1E(Zh).

Finally, we estimate the standard error of the aggregate treatment effect estimator (for

estimator class c) as

σ̂c,Σ :=

√√√√∑
j∈J

V̂j +
∑
j∈J

∑
j̃∈J \J

V̂
j ,̃j
.

cluster-robust estimator can be applied in the situation where observations cluster on both households h and
ages A.
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A3.3 Details on the Monetization of Formal Education

We estimate the present value generated by education costs. These costs include special

education, K-12 education, and college.

K-12 and Special Education Costs

Records for K-12 education and special-education classes are almost entirely observed (118

out of 123 of PPP participants). We require no special analysis in terms of data preparation

or additional estimation techniques. We assign an annual cost of 8,665 (2017 USD) per

year of schooling and 18,803 (2017 USD) per year of special or remedial education year per

participant. Estimates for expenses per student for regular education are taken from Grant

and Lind (1978), corresponding to the school year 1975-1976. For that same period, Kakalik

et al. (1981) provides a national ratio of current expenses per special education student to

those per regular student of 2.17:1. We assume that this national ratio is comparable to

the one applicable to Michigan. This factor is conservative because Kakalik et al. (1981)

report estimates for the categories of special education that most likely apply to the PPP

population (learning difficulties or different grades of mental retardation and emotional dis-

turbance), which range between 2.3 and 3.8.

College Costs

We obtain estimates of college costs from Grant and Snyder (1986). We define the cost of

college education for the PPP participants to society as the annual national expenditure

of colleges per full-time equivalent student net of the average fees and in-state tuition of

public colleges. We use estimates for the academic year 1982-1983, which is just after high

school completion for most participants. We use tables 78 and 180 of Grant and Snyder

(1986)—13,768 (2017 USD) as the annual expenditure per college student in Michigan.
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For the first two college enrollment periods, we have data on whether PPP participants were

enrolled part-time. For every part-time enrollment, we only assign half of the annual cost.

We do not distinguish between 2-year and 4-year college visits, even though expenditures

per capita differ between these two institutions (see Grant and Snyder, 1986). We use the

average between the expenditure of both types in our calculations.

Total Education Costs

We define the treatment effect on total costs of education to society simply as the sum of

the two treatment effects described beforehand.

A3.3.1 Estimation Specifics

Because of schooling timing differences between the control and treatment groups, we would

need enrollment and matriculation records for each participant to monetize and appropriately

discount college costs. However, college education data in the PPP sample was inconsistently

recorded over different surveys. The age-27 and age-40 surveys have some inconsistencies.

To minimize measurement error, we apply the data preparation algorithm outlined below.

The preparation algorithm successfully resolves 2
3 of the data inconsistencies.

We apply the MD and OLS estimators to the resulting complete case data. For AIPW,

we supplement complete-case data with partially observed enrollment data. We proceed as

follows. We consider college education costs, and deal with other educational costs anal-

ogously. For illustration purposes, we make the simplification that we first monetize and

discount each individual path and then condition the discounted cost on covariates, instead

of running age-wise regressions. Consider a partition of the population P = Pc ∪ P ic ∪ Pm

into individuals with complete educational records Pc , those with partially observed educa-

tional records P ic , and those with fully missing records, Pm . Note that for i ∈ P ic we only
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Table A3.2. Summary of Education Observations

Use Algorithm Treatment Status D = d Participants |P| Some College observed |Pc ∪ P ic | College, partially obs. |P ic | College data Missing |Pm |

No 0 65 34 22 11
No 1 58 38 25 3
Yes 0 65 34 7 11
Yes 1 58 38 9 3

21



know whether i was enrolled in college at some point, but cannot pinpoint when and for how

long. Let Yi = Di Y 1
i + (1−Di )Y 0

i denote the total discounted cost of college education of

person i , let R′i be a binary indicator of i ∈ Pc ∪ P ic (i.e., partially or fully observed Yi )

and let Ri be a binary indicator of i ∈ Pc (fully observed records). Similar to crime and

earnings domains, Yi is censored around 0, which we reflect with an enrollment or partici-

pation indicator, Ii . We can thus write Y d
i = Ii Y

∗,d
i , Y

∗,d
i as the total cost conditional on

participation if the treatment status is fixed at d and Ii at 1. Let then Ÿ d
i be a linear regres-

sion estimator for E[Y
∗,d
i

∣∣ Zi ,Di = d , Ii = 1,Ri = R′i = 1] = E[Y
∗,d
i

∣∣ Zi ,Di = d , Ii = 1].

These are conditional (on Zi ) expected costs for those enrolled at some point (Ii = 1), es-

timated on the population {i : Di = d , Ii = 1,Ri = R′i = 1}, which is a subset of Pc ,

hence observed. Second, let Ỹ d
i be a regression estimator of P(Ii = 1

∣∣ Zi ,Di = d ,Ri =

R′i = 1)E[Y
∗,d
i

∣∣ Zi ,Di = d ,Ri = R′i = 1] = P(Ii = 1
∣∣ Zi ,Di = d)E[Y

∗,d
i

∣∣ Zi ,Di = d ].7

Roughly speaking, Ÿ d
i conditions on Ii and imputes outcomes for i ∈ P ic while Ỹ d

i imputes

outcomes for i ∈ Pm . Then, set Ŷ d
i := R′i Ii Ÿ d

i + (1−R′i )Ii Ỹ d
i . We use Ŷ d

i in the AIPW

estimator Π̂aipw.

A3.3.2 Constructing PPP Enrollment Profiles

To estimate the cost to society of providing PPP participants formal-education years such

as college education, we need enrollment and matriculation records for each participant.

However, the PPP sample’s education data were inconsistently recorded in different surveys,

especially the age-27 and age-40 survey, leading to disagreement in enrollment periods and

considerable measurement error. To align data from different surveys, we clean it from

obvious mistakes in data entry (e.g., by researching term lengths of colleges attended by

individuals or removing participation in programs that do not fit the outcome). For all

7We estimate the first factor by a Logit, the second factor by linear regression. Note that this procedure
is slightly more formally articulated and otherwise akin to the one used in Section A3.4 for earnings.
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remaining issues, we use the following algorithm. Consider college enrollment again. Let

θi = (t in
i , tout

i ) ∈ Θi , t in
i < tout

i be a pair of enrollment and matriculation dates for

participant i and Θi be the set of all such pairs recorded in the PPP data for i . Now, a

situation can arise in which θi 6= θ′i ∈ Θi exist such that both periods overlap and hence

conflict. If this is not the case, we say that θi , θ
′
i are consistent. θ and θ′ are consistent with

one another, if and only if (tout
i ≤ t in′

i or tout ′
i ≤ t in

i ). Furthermore, call a set Θ̃i ⊆ Θi

consistent if all its elements are pairwise consistent, and maximally consistent, if for any

θ̆i ∈ Θi \ Θ̃i , the set {θ̆i} ∪ Θi is not consistent. We assume that the true enrollment

profile of i , Θ∗i ⊆ Θi , is such a maximally consistent set. This equates to 1) assuming that

there are no periods of parallel enrollments in two institutions and 2) that we trust all non-

contradictory data. Third, we rely on longer periods of enrollment, so we do not accidentally

discard, for instance, a college enrollment for a short job training. Define the overlap of two

enrollment periods θi , θ
′
i as

d(θi , θ
′
i ) =

min (θout
i − θ′ in

i , θ′ out
i − θin

i )

max (θout
i − θin

i , θ′ out
i − θ′ in

i )
,

which is the share of the longer of the two periods that are overlapped by the shorter. We

discard the shorter period whenever d(θi , θ
′
i ) ≥ 1− γ for some tuning parameter γ ∈ (0, 1).

If we cannot discard the shorter period with this criterion, Θi cannot be made consistent and

we interpret i ’s educational data as (partially) missing and set R′i = 1−Ri = 0. Likewise, if

more than two periods overlap simultaneously or resolving conflicts in Θi in a different order

yields different results, we set R′i = 1− Ri = 0. Algorithm 1 describes the exact procedure.
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Algorithm 1: Preparing the education data for individual i with Ri = 1 (i.e.,
enrollment data was obtained.). Drop subscripts for brevity.

set R′ = 1;
if Θ is inconsistent (i.e., if there is a disagreement in education enrollment periods) then

define Θ′ ⊆ Θ as the subset of Θ containing all conflicting θs. pick some order of all
θk ∈ Θ′. Let πj be the j th permutation of the k ’s, j = 1, ...,M with M := |Θ′|!;

set j = 1;
while j ≤ M or R′ = 1 do

set Θj = ∅, Θ′′ = Θ′;
take the ordering θπj (k), k = 1, ..., |Θ′|;
while Θ′′ 6= ∅ do

let θ̆ be the element with the lowest index in Θ′′ according to ordering πj ;

attempt to resolve the conflict of θ̆ using overlap criterion;

if conflict cannot be resolved or θ̆ overlaps with ≥ 2 elements then
set R′ = 0, Θ = ∅;
exit;

end

remove θ̆ and elements discarded in the last step from Θ′′, move θ̆ into Θj ;

end
set j = j + 1;

end

if Θ1 = ... = ΘM and R′ = 1 then

set Θ = Θ1. This is i ’s final profile;
exit.

else
set Θ = ∅ and R′ = 0;
exit.

end

end

A3.4 Details on the Monetization of Labor Income

We obtain monthly observations on employment hours and wages directly from the PPP

data. We examine the raw PPP data on employment histories and incarceration status to

impute missing incomes.8 We apply the OLS and MD estimators straight to the observed

data as described. For the AIPW estimator, potential labor income is a censored variable

only observed if the respective participant is employed. To construct AIPW first-stage es-

8For example, if observations of labor income are missing over a period during which a participant i was
potentially incarcerated (we lack precise dates when individuals start serving their sentences, but we can
bound the timing of prison sentences using their conviction year and length of sentence), we impute zero
income during these periods. We do not assign a value to prison employment in our estimation since prison
wages are negligible (less than $1 per hour).
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timates, we let Ei ,a be an indicator for whether individual i had some kind of employment

at age a, then Yi ,a—which refers to annual labor income in this section—can be written as

Yi ,a = Ei ,aY ∗i ,a , where Y ∗i ,a is the potential labor earnings if i ’s employment status at age

a were fixed at 1. Consequently, Ŷ d
i ,a is an estimate of E[Y d

i ,a

∣∣ Zi ,Di = d ,Ri ,a = 1,Ei ,a ]

which equals P(Ei ,a = 1
∣∣ Zi ,Di = d ,Ri ,a = 1)E[Y

∗,d
i ,a

∣∣ Zi ,Di = d ,Ri ,a = 1,Ei ,a = 1]

if unobserved and Ei ,aE[Y
∗,d
i ,a

∣∣ Zi ,Di = d ,Ri ,a = 1,Ei ,a = 1] if observed. We weight

observations from adjoining ages using a normal kernel. Thus, our method forms imputa-

tions cross-sectionally and smoothes over the mean income path of the treatment and control

groups.9 Missing-data rates are fairly low, with 16% after data cleaning and preprocessing.

Missing-data rates for treated and control participants are 14% and 18%, respectively.

For sensitivity analysis, we consider two additional methods for monetizing labor income.

First, we interpolate the remaining missing values in the method described above. Second,

we use the non-parametric matching method of Garćıa et al. (2020). We match each PPP

participant with individuals in the National Longitudinal Study of the Young 1979 to impute

missing values and forecast earnings after age 54, conditional on their observed earnings up

to that age. Section 4.2 shows that our results are robust to using these two alternative

methods.

A3.4.1 Labor Income Taxes

The increase in the earnings tax base due to higher labor income in the treatment group

increases the state and federal tax base. We monetize these benefits by passing each labor-

income observation through the appropriate tax function. To clarify this procedure, we

9Note that we do not include income lags to predict Yi ,a . Preliminary calculations indicate that this
does not add to our analyses. Especially, there is no indication that lagged observed income levels predict
missing data after controlling for Zi ,Di in a Logit model. Hence, our estimator assumption MAR II should
be satisfied even without conditioning on income lags.
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replace age for time indices and write Yi ,t as the individual- and time-specific labor income.

We evaluate Yi ,t in the appropriate tax function gi ,t (Yi ,t ). The tax function outputs the

amount of federal and state taxes (national average rate) that an individual would have to

pay when earning labor income Yi ,t . We take the historical tax rates and deductibles at

the state level from Citizens Research Council of Michigan (2021) and the historical aver-

age individual tax rates by income bracket at the federal level from Tax Policy Center (2020).

When choosing the function gi ,t (·) for each PPP participant, we consider their marital status.

We proceed as follows:

1. If their marital status and spousal income is known, we form household income and

calculate taxes based on it.

2. If their marital status is known and their spousal income is unknown but is observed

in previous years, we assume that the spouse makes the last observed amount and

proceed as in 1.

3. If their marital status is known and their spousal income is unknown and unobserved

in previous years, we assume that the participant’s labor income is half of the total

household labor income and proceed as in 1. This may be inaccurate when computing

total household income privately. However, it is a good approximation for taxation

purposes because labor-income taxation is (partly) based on household size.

4. If the individual is single or their marital status is missing, we simply assume individual

taxation.

A3.4.2 Transfer Income

We calculate the benefit from transfers from the government to individuals as follows:
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1. Individuals report whether they receive transfers from the government in the last two

months from the following programs: temporary assistance to needy families, food

stamps, child care subsidies, supplemental security income, unemployment insurance,

general welfare assistance, disability payments, aid to families with dependent children,

and any others. They report one figure per social program and we add up all amounts.

2. Individuals report for how many years in the last 15 years they have received money

from any social programs in 1. We estimate that the average monthly amount they

received in the last 15 years is equal to the amount received in 1. times the fraction of

years in which they actually received transfers. This imputation carries the observed

transfer payments backwards until the preceding interview, and accounts for welfare

reforms that happened over the life-cycles of the PPP participants.

3. We discount and add up the amounts in 2. across each individual’s life cycles and

reverse the scale (i.e., multiply by −1). We reverse the scale because we consider a

reduction in transfer income a benefit.

A3.5 Details on the Monetization of Crime

Let Ỳ d
i ,a denote the total crime costs for individual i with treatment status fixed at d , at age

a. The total crime costs include the sum of criminal justice system and victim costs flowing

from all crimes committed at age a. Ideally, we would define Y
CJS -1,d
i ,a,c as the cost to the

criminal justice system that flow from each victimization (i.e., for investigating the crime,

etc.) and the costs emanating from each arrest Y
CJS -2,d
i ,a,c (legal costs plus costs of keeping

someone in prison if convicted) separately, where c ∈ C denotes a given crime category or

crime type under consideration. Then, we would denote as nd
i ,a,c the number of crimes

committed, ñd
i ,a,c the number of crimes with arrests for and Y

V ,d
i ,a,c the average victim costs

of the crimes committed by i at age a and in crime category c ∈ C. The individual treatment
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effect on crime costs at age a in this scenario would be

∑
c∈C

[
nd

i ,a,c(Y
V ,d
i ,a,c + Y

CJS -1,d
i ,a,c ) + ñd

i ,a,cY
CJS -2,d
i ,a,c

]
.

We simplify this ideal scenario and lump Y
CJS -1,d
i ,a,c and Y

CJS -2,d
i ,a,c into Y

CJS ,d
i ,a,c . We count

criminal justice system costs by arrest and not by incidence. This attenuates our treatment-

effect estimates, and leads to more conservative estimates. Our target individual-level pa-

rameter is

Ỳ 1
i ,a − Ỳ 0

i ,a := τi =

∑
c∈C

n1
i ,a,cY

V ,1
i ,a,c − n0

i ,a,cY
V ,0
i ,a,c


︸ ︷︷ ︸

:=τV
i

+

∑
c∈C

ñ1
i ,a,cY

CJS ,1
i ,a,c − ñ0

i ,a,cY
CJS ,0
i ,a,c


︸ ︷︷ ︸

:=τCJS
i

,

where τV
i and τCJS

i decompose the total treatment effect into victim and criminal justice

system costs, and Ỳ d
i ,a :=

∑
c∈C nd

i ,a,cY
V ,d
i ,a,c + ñd

i ,a,cY
CJS ,d
i ,a,c denotes what we define as the

true cost of crime from individual i at age a (fixing Di = d). Correspondingly, we set

Ỳ
V ,d
i ,a :=

∑
c∈C nd

i ,a,cY
V ,d
i ,a,c and Ỳ

CJS ,d
i ,a :=

∑
c∈C ñd

i ,a,cY
CJS ,d
i ,a,c .

For individual i fixed at treatment status Di = d , we assign cost estimates for Ỳ d
i ,a,c as

follows. We do not observe the number of crimes of type c that i has committed (ni ,a,c).

However, we observe the number of arrests (ñi ,a,c) that they have experienced at that age

for that same crime. Therefore, we inflate the number of observed arrests by the ratio of

total victimizations in the US to total number of arrests in the US (for that crime type),

φ̄c . We do not precisely observe the costs to the victims of i ’s committed crimes. Instead,

we assign estimates of national mean victim costs, ȳV
c for each crime category, c, as victim

cost to the crime the PPP individual was arrested for. Criminal justice system costs on a

state level (Michigan) are broken down and assigned to crime categories and summed with
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incarceration costs to form ȳV
i ,a,c . This leads us to define

Y d
i ,a :=

∑
c

[
ñi ,a,c φ̄c ȳV

i ,a,c + ñi ,a,c ȳCJS
c

]

as the observed cost of crime flowing from i at age a. We describe our data and methods to

construct Y d
i ,a more precisely in Section A3.5.1.

We use inflation factors and cost estimates from data sources that match criminal activity in

the PPP sample not only spatially but also temporally. We are not always able to estimate

parameters that coincide with the structure and horizon of the PPP sample perfectly.

A3.5.1 Construction of Crime Costs

We define the cost of crime to society as the sum of costs to victims and costs to the

criminal justice system (CJS costs). Victim costs include medical and mental healthcare

bills, damaged property, lost income from employment disability, and lost quality of life. CJS

costs include costs from police investigation, holding a trial, incarceration, and probation.

We estimate both kinds of crime costs using the PPP crime data, supplemented with several

national-level data files and cost estimates.

Crime Data Sources

The PPP crime data were collected from administrative, criminal records and reflect major

checkpoints in a perpetrator’s progress through the criminal justice system. For felonies,

the data list every arrest, charge, conviction, prison sentence,10 probation sentence and fine

given to a PPP participant. They list every arrest, dropped charge, jail sentence, probation

sentence, and fines for misdemeanors. For each arrest, charge, and conviction, it lists the

10The data list the minimum and maximum prison sentence lengths assigned at conviction. We use the
minimum sentence length as the actual time served, which is unknown.
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set of crime types (e.g., non-negligent homicide, aggravated assault, motor vehicle theft)

believed by the arresting officer or court to describe the crime event best.11

We supplement the PPP crime data with the National Crime Victimization Survey (NCVS),

the Uniform Crime Reports (UCR), and the National Judicial Reporting Program (NJRP).

We develop the common crime type categorization described below to harmonize each of

these data sources with the PPP crime data. We present a short description of each data

source in Table A3.3.

In the PPP data, misdemeanors committed after the age 40 follow-up are classified using

only four broad crime types: violent, property, drug-related, and other. To harmonize the

data with the literature on crime costs to victims (which uses a finer set of crime types),

we make the plausible assumption that all violent misdemeanors committed after age 40 are

assaults, and all property misdemeanors committed after age 40 are larcenies. Tables A3.5

and A3.4 break down crime incidence for misdemeanors and felonies in control and treatment

group, respectively.

Victim Costs

We sequentially tackle three challenges when estimating victim costs. First, only crimes that

lead to arrests are observed. Hence, we inflate arrest counts and associated victim costs us-

ing national-level inflation factors. Second, we survey recent literature to locate estimates of

mean crime costs per crime category. Third, we acknowledge that mean victimization costs

per crime category might be very different in the PPP sample than in the general US pop-

ulation. Furthermore, mean victimization costs within crime categories might be different

for treatment and control group (e.g., if control participants tended to commit more severe

11In total, there are 73 discrete crime types used in the data.
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Table A3.3. Description of Auxiliary Crime Data Sources

NCVS The NCVS is a nationally representative, self-reported US survey on crime vic-
timization at the household level. It provides detailed information on crimes,
including those not reported to the police. We use the NCVS data to estimate
total annual victimization in the US for six crime types: rape/sexual assault,
robbery, assault, burglary, larceny/theft, and motor-vehicle theft. To minimize
the burden on both surveyors and respondents, the NCVS allows surveyors to
use one incident report to cover multiple incidents if they are similar in nature,
occurred within a 6-month window, and are difficult for the respondent to dis-
tinguish. We include these “series crimes” but cap them at ten as suggested in
Shook-Sa et al. (2015).

UCR The UCR provides comprehensive arrest data for state and local agencies across
the US beginning in 1980. It contains crimes to households, individuals, and
businesses captured by most law enforcement agencies in the country. We use
the UCR data to estimate total annual arrests in the US by crime type. The UCR
includes all of the crime types surveyed in the NCVS plus “murder.” We estimate
the number of murder victimizations using the presumably more conservative
“number of murders reported to the police” reported in the UCR. The UCR
distinguishes type-1 crimes which are murder, rape, assault, robbery, larceny,
burglary, and motor-vehicle theft, and type-2 crimes, those are sorted into 19
categories of less serious crimes.

NJRP The NJRP collects detailed data on sentencing and offender characteristics from
a nationally representative sample of convicted felons. We use the 2006 NJRP
report (United States Department of Justice (2010)) to examine distributions of
sentence types and lengths for each of the following crime types: murder, rape,
robbery, assault, burglary, larceny, fraud, motor vehicle theft, drug crimes, and
other. The 2006 NJRP is a reasonable choice since PPP participants’ criminal
activity was the highest during their late 20’s/early 30’s.
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Table A3.4. Perry Felony Data, Summary Statistics

Prison Years Probation
Arrests Convictions Sentence Incarcerated Sentence

Crime Type T C T C T C T C T C

Murder 0.02 0.05 0.02 0.03 0.02 0.03 7.50 32.50 0.00 0.00
male 0.03 0.05 0.03 0.05 0.03 0.05 7.50 32.50 0.00 0.00
female 0.00 0.04 0.00 0.00 0.00 0.00 . . 0.00 0.00

Rape 0.07 0.28 0.03 0.09 0.03 0.08 1.08 4.77 0.02 0.02
male 0.12 0.46 0.06 0.15 0.06 0.13 1.08 4.77 0.03 0.03
female 0.00 0.00 0.00 0.00 0.00 0.00 . . 0.00 0.00

Robbery 0.14 0.20 0.09 0.11 0.05 0.09 10.67 3.32 0.00 0.00
male 0.24 0.31 0.15 0.15 0.09 0.13 10.67 3.18 0.00 0.00
female 0.00 0.04 0.00 0.04 0.00 0.04 . 4.00 0.00 0.00

Assault 0.24 0.51 0.12 0.25 0.03 0.17 3.83 2.16 0.00 0.03
male 0.42 0.85 0.21 0.41 0.06 0.28 3.83 2.16 0.00 0.05
female 0.00 0.00 0.00 0.00 0.00 0.00 . . 0.00 0.00

Burglary 0.36 0.34 0.21 0.14 0.10 0.12 3.56 1.29 0.10 0.03
male 0.64 0.54 0.36 0.23 0.18 0.21 3.56 1.29 0.18 0.05
female 0.00 0.04 0.00 0.00 0.00 0.00 . . 0.00 0.00

Larceny 0.22 0.68 0.19 0.26 0.09 0.17 1.40 2.60 0.07 0.08
male 0.39 1.08 0.33 0.38 0.15 0.26 1.40 2.85 0.12 0.10
female 0.00 0.08 0.00 0.08 0.00 0.04 . 0.08 0.00 0.04

Motor-Vehicle Theft 0.03 0.08 0.02 0.03 0.00 0.02 . 0.25 0.00 0.02
male 0.06 0.13 0.03 0.05 0.00 0.03 . 0.25 0.00 0.03
female 0.00 0.00 0.00 0.00 0.00 0.00 . . 0.00 0.00

Fraud 0.47 0.11 0.07 0.05 0.02 0.03 1.00 0.75 0.05 0.02
male 0.70 0.13 0.09 0.05 0.03 0.05 1.00 0.75 0.06 0.00
female 0.16 0.08 0.04 0.04 0.00 0.00 . . 0.04 0.04

Vandalism 0.02 0.00 0.00 0.00 0.00 0.00 . . 0.00 0.00
male 0.03 0.00 0.00 0.00 0.00 0.00 . . 0.00 0.00
female 0.00 0.00 0.00 0.00 0.00 0.00 . . 0.00 0.00

Stolen Property 0.07 0.09 0.05 0.11 0.05 0.08 1.19 1.93 0.02 0.02
male 0.12 0.15 0.09 0.18 0.09 0.13 1.19 1.93 0.03 0.03
female 0.00 0.00 0.00 0.00 0.00 0.00 . . 0.00 0.00

Drug Offense 0.36 0.54 0.28 0.31 0.16 0.20 6.14 2.27 0.05 0.11
male 0.64 0.77 0.48 0.41 0.27 0.28 6.14 2.36 0.09 0.10
female 0.00 0.19 0.00 0.15 0.00 0.08 . 1.75 0.00 0.12

Disorderly Conduct 0.10 0.26 0.14 0.11 0.05 0.06 2.06 1.63 0.02 0.00
male 0.18 0.38 0.24 0.15 0.09 0.08 2.06 1.58 0.03 0.00
female 0.00 0.08 0.00 0.04 0.00 0.04 . 1.75 0.00 0.00

Miscellaneous 0.26 0.15 0.07 0.08 0.03 0.00 1.58 . 0.02 0.02
male 0.45 0.26 0.12 0.13 0.06 0.00 1.58 . 0.03 0.03
female 0.00 0.00 0.00 0.00 0.00 0.00 . . 0.00 0.00

Total 2.36 3.28 1.28 1.55 0.64 1.05 3.97 3.22 0.34 0.32
male 4.03 5.10 2.21 2.36 1.12 1.62 3.97 3.33 0.58 0.41
female 0.16 0.54 0.04 0.35 0.00 0.19 . 1.87 0.04 0.19

Note: This table summarizes the PPP administrative felony data. A column labeled with C displays the
average in the control group. A column labeled with T displays the average in the treatment group. Prison
and probation sentences are not assigned to individual citations at conviction, but to the bundle of (up to 7)
citations associated with a given incident. In this table, we assign sentences to a specific crime type using the
most serious crime type cited at conviction. Where possible, we use the hierarchy established by the UCR
to determine crime seriousness (our ordering is given by the order of crime types in this table). The columns
Arrests, Convictions, Prison Sentence, and Probation Sentence display average lifetime number
of arrests, convictions, prison sentences, and probation sentences per participant. Years Incarcerated
displays the average number of years incarcerated among participants who received a prison sentence.
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Table A3.5. Perry Misdemeanor Data, Summary Statistics

Jail Years Probation
Arrests Convictions Sentence Incarcerated Sentence

Crime Type T C T C T C T C T C

Assault 0.29 0.89 0.16 0.63 0.05 0.22 0.18 0.23 0.07 0.11
male 0.45 1.15 0.24 0.82 0.09 0.28 0.18 0.28 0.09 0.18
female 0.08 0.50 0.04 0.35 0.00 0.12 . 0.08 0.04 0.00

Child Abuse 0.02 0.00 0.00 0.00 0.00 0.00 . . 0.00 0.00
male 0.03 0.00 0.00 0.00 0.00 0.00 . . 0.00 0.00
female 0.00 0.00 0.00 0.00 0.00 0.00 . . 0.00 0.00

Larceny 0.40 0.66 0.31 0.62 0.14 0.26 0.41 0.12 0.03 0.03
male 0.61 0.79 0.45 0.72 0.18 0.31 0.36 0.09 0.03 0.00
female 0.12 0.46 0.12 0.46 0.08 0.19 0.54 0.18 0.04 0.08

Burglary 0.02 0.08 0.00 0.03 0.00 0.03 . 0.07 0.00 0.02
male 0.03 0.13 0.00 0.05 0.00 0.05 . 0.07 0.00 0.03
female 0.00 0.00 0.00 0.00 0.00 0.00 . . 0.00 0.00

Fraud 0.09 0.29 0.07 0.23 0.03 0.15 0.11 0.07 0.00 0.02
male 0.06 0.36 0.06 0.28 0.06 0.18 0.11 0.08 0.00 0.03
female 0.12 0.19 0.08 0.15 0.00 0.12 . 0.06 0.00 0.00

Vandalism 0.07 0.15 0.03 0.11 0.02 0.03 0.16 0.07 0.00 0.00
male 0.09 0.21 0.03 0.13 0.03 0.05 0.16 0.07 0.00 0.00
female 0.04 0.08 0.04 0.08 0.00 0.00 . . 0.00 0.00

Stolen Property 0.02 0.02 0.02 0.02 0.02 0.00 0.25 . 0.02 0.00
male 0.03 0.03 0.03 0.03 0.03 0.00 0.25 . 0.03 0.00
female 0.00 0.00 0.00 0.00 0.00 0.00 . . 0.00 0.00

Drug Offense 0.22 0.42 0.16 0.37 0.05 0.15 0.13 0.26 0.05 0.02
male 0.33 0.54 0.24 0.49 0.06 0.21 0.13 0.28 0.09 0.03
female 0.08 0.23 0.04 0.19 0.04 0.08 0.12 0.14 0.00 0.00

Disorderly Conduct 0.59 0.72 0.57 0.65 0.10 0.20 0.11 0.14 0.05 0.11
male 1.00 0.92 0.97 0.79 0.18 0.31 0.11 0.15 0.09 0.15
female 0.04 0.42 0.04 0.42 0.00 0.04 . 0.01 0.00 0.04

Driving Offense 2.50 3.25 2.03 2.62 0.31 0.65 0.05 0.08 0.03 0.14
male 3.18 4.21 2.64 3.38 0.42 0.95 0.05 0.08 0.00 0.15
female 1.60 1.81 1.24 1.46 0.16 0.19 0.05 0.13 0.08 0.12

Miscellaneous 0.34 0.51 0.26 0.43 0.07 0.18 0.09 0.20 0.02 0.08
male 0.48 0.69 0.36 0.62 0.12 0.26 0.09 0.24 0.03 0.13
female 0.16 0.23 0.12 0.15 0.00 0.08 . 0.02 0.00 0.00

Total 4.55 6.98 3.60 5.69 0.79 1.88 0.15 0.14 0.28 0.51
male 6.30 9.03 5.03 7.31 1.18 2.59 0.14 0.14 0.36 0.69
female 2.24 3.92 1.72 3.27 0.28 0.81 0.20 0.11 0.16 0.23

Note: This table summarizes the PPP administrative misdemeanor data. A column labeled with C displays
the average in the control group. A column labeled with T displays the average in the treatment group.
Arrests, Convictions, Jail Sentence, and Probation Sentence provide the average lifetime number
of arrests, convictions, jail sentences, and probation sentences per participant; Years Jailed provides the
average number of years jailed among participants who received a jail sentence.
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instances of crimes within any given category, we would underestimate the actual difference

between the populations).

Crime Inflation Rates

We use several nationally representative datasets to construct victimization-arrest inflation

factors to correct for unobserved PPP crimes. We estimate the total victim costs (Y V
i ,a)

attributable to participant i at age a as the sum of crime-specific mean victim costs per

arrest (ñ(i , a, c)ȳV
c , where ȳV

c is the mean victim cost of a crime in category c) inflated by

the national victim-to-arrest ratio φ̄c (“VA-ratio” or victimization-inflation ratio) for that

crime category (c) to account for unobserved crimes, that is Y V
i ,a =

∑
c∈C ñi ,a,c ȳV

c · φ̄c .12

We use national average ratios of crime victimization to arrests for each of seven serious

crime types reported in the NCVS: murder, rape, robbery, assault, burglary, larceny, and

motor-vehicle theft. To impute other violent crimes, we calculate a “violent crime” victim-

to-arrest ratio using the sum of rape, robbery, and assault. To impute other property crimes,

we calculate a “property crime” victim-to-arrest ratio using the sum of burglary, larceny, and

motor vehicle theft. Table A3.7 displays our victim-arrest ratios estimated both on the data

for the entire US and on data restricted to the Midwest.13 We use the more conservative,

smaller national estimates for our primary analyses.

The NCVS made significant methodological changes in 1993 (before which it was known as

the National Crime Survey), making data from the years before 1993 incompatible with the

12We work with a time-invariant victimization-inflation ratio, drawing from crime data between 1995
and 2015. The actual victimization-inflation ratio has decreased over time. This inaccuracy leads to more
conservative treatment-effect estimates. This is because 1) we will under-inflate crimes during peak times
of criminal activity of the PPP sample, and 2) the control group maintains higher levels of criminal activity
than the treatment group.

13The Midwest is formed by Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska,
North Dakota, Ohio, South Dakota, and Wisconsin.
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years after. For this reason, and also because we do not know the exact year when PPP

participants committed the crimes, we use victimization estimates averaged across all years

in the NCVS (1994-2015) rather than estimating victimization every year. This approach

is likely conservative as victimization appears to have been flat during the 1980s, trending

downward throughout the 1990s, and then flattened out again in the 2000s (see figure A3.3).

We calculate national arrest counts using the Uniform Crime Reports (UCR). Although

available beginning in 1980, we restrict our attention to 1994 onward to match the NCVS

availability. Additionally, as murder is unavailable in the NCVS, we use UCR data on clear-

ances made by arrests to estimate the victim-arrest ratio for murder.14

Comparing victimization and arrest across datasets by crime type requires a common crime

type categorization. We tabulate our harmonized crime categories across PPP data, UCR,

and NCVS in Table A3.8.

Unit Crime Costs

We draw average victim-cost estimates, ȳV
c , from Miller et al. (2020). Following the standard

in the literature, Miller et al. (2020) uses a bottom-up approach to estimate victim costs per

crime incident by type across several components. We calculate ȳV
c as the sum of medical

costs, mental health costs, work loss, property loss, and loss of quality of life.15 We exclude

public services, adjudication and sanctioning, and perpetrator work loss.16 Compared with

14As participation in the UCR program is voluntary, many agencies do not submit complete arrest records
for all 12 months. Following the methods suggested in the FBI’s Crime in the US reports, Federal Bureau of
Investigation (2020), we consider non-responding agencies (0-2 months reported) and partially responding
agencies (3-11 months reported) separately. For non-responding agencies we estimate arrests using the arrest
rate of agencies reporting 12 months in the same population size group. For agencies reporting 3-11 months
of data, we simply inflate the total arrests by 12/N where N is the number of months reported.

15To estimate the loss of quality of life, Miller et al. (2020) use a willingness-to-award approach based
on jury verdicts and settlements. This approach leads to smaller estimates than the willingness-to-pay
approaches used more frequently in the literature.

16Public services and adjudication and sanctioning costs are included as costs to the criminal justice
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prior studies (e.g., Cohen et al., 2004; McCollister et al., 2010), the estimates reported in

Miller et al. (2020) are more conservative and cover a wider range of crime types. We provide

an overview of average costs of crime to victims by crime type in Table A3.9.

Costs to the Criminal Justice System

Costs to the criminal justice system are split between police, court, and correctional costs.

We estimate the average police and court costs per arrest using an adjusted version of the

methods developed in Hunt et al. (2017) and Hunt et al. (2019). Police and court costs vary

by crime type. Specific to Michigan, we find a range between $2,371 (2017 USD) per arrest

for UCR type-2 crimes (e.g., drug-related crimes, driving offenses, vandalism) and $367,107

(2017 USD) for murder.

Table A3.6 shows the average maximum prison sentence assigned at conviction for both the

PPP control and treatment groups. We compare these sentence lengths to the national av-

erage given in the National Judicial Reporting Program’s 2006 report.

Hunt et al. (2019) develop a top-down approach to estimate the marginal cost of policing for

UCR-type-1 crimes. Hunt et al. (2017) develop a similar approach to estimate the marginal

cost to the court system for the same set of crimes. We adapt these approaches to estimate

marginal costs to the police and court system in Michigan for each crime type used in the

UCR (both type-1 and type-2). Correctional costs are added over time incarcerated/paroled

and vary by type of sentence. We take our annual costs of prison, jail, and probation from

reports published by the Bureau of Justice Statistics (BJS).

Police and Court Costs

system and our analyses on PPP earnings capture perpetrator work loss costs.
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Hunt et al. (2019) use results from time-use surveys combined with information about a

state’s urban-rural composition and police-force role structure to allocate shares of annual

law enforcement operating expenditure for various crime types. Similarly, Hunt et al. (2017)

use results from time-use surveys and information on sentencing distributions to allocate

shares of annual state expenditures on judicial and legal services to various crime types. We

depart from their methods in two ways: 1) Because they estimate costs per crime reported

to the police, they are limited to type-1 crimes for which the UCR records this information.

We instead estimate costs per arrest, allowing us to expand our set of crimes to the complete

set of type-1 and type-2 crimes; and 2) Secondly, they estimate costs for each state only for

the year 2010. Instead, we use a time series of police expenditure information and arrests to

estimate costs for each year between 1980 and 2015.17

We use the following formula (adjusted from Hunt et al. (2019)) to estimate ω
police
c,t , the

marginal cost of policing crime type c in year t in Michigan:

ω
police
c,t =

(
Et ·

∑
r dr

(
u · pr ,urban + (1− u) · pr ,rural

))
Ac,t

(A.10)

·

u
Ac,tτc,urban∑

c′
Ac′,tτc′,urban

+ (1− u)
Ac,tτc,rural∑
c′ Ac′,tτc′,rural


where

– Et is the annual law enforcement operating expenditure in Michigan in year t , taken
from the Justice Expenditure and Employment Extracts (CJEE) for the years 1980-
2015.18 As recommended in Hunt et al. (2019), we inflate expenditures in the CJEE
by 60% to account for the deadweight loss of taxation (20%) and the additional cost
of providing employee benefits (40%).

– dr , taken directly from Hunt et al. (2019), is the proportion of officers in Michigan
assigned to role r , where officer roles include: general officers, community police officers,
special task force officers, and detectives.

17The PPP data cover 1973-2016. We use 1980 costs for years prior to 1980 and 2015 costs for the year
2016.

18We use a linear interpolation to estimate missing years (1987, 1989, 1990, 1991, 2001, and 2003).
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– u is the urban density of Michigan and is taken from the 1990, 2000, and 2010 US
Census.19

– pr ,urban and pr ,rural are the proportions of time spent on crime by type r officers in
urban and rural areas, respectively. We take the midpoint between minimum and
maximum values given in Hunt et al. (2019).

– τc,urban and τc,rural are the number of hours spent on crime type c in urban and rural
areas. We take the midpoint between minimum and maximum values given in Hunt
et al. (2019).

– Ac,t is the number of arrests of type c in Michigan in year t , calculated using the UCR
arrest data for the years 1980-2015.

We estimate ωcourt
c,t , the marginal cost of policing crime type c in year t in Michigan using

the following formula (adjusted from Hunt et al. (2017)):

ωcourt
c,t = Et d

pctc,fel + (1− pc)tc,misd∑
c′(pc′tc′,fel + (1− pc′)tc′,misd )Ac,t

(A.11)

where

– Et is the annual direct current judicial and legal expenditure in Michigan in year t ,
taken from the Justice Expenditure and Employment Extracts (CJEE) for the years
1982-2015.20

– d , taken directly from Hunt et al. (2017), is the proportion of cases in Michigan that
are criminal cases

– pc , taken directly from Hunt et al. (2017), is the proportion of type c crimes that are
felonies. It is estimated as the proportion of type c crimes which result in a prison
sentence. We set pc equal to the felony proportion for larcenies (the lowest among
type-1 crimes) for all UCR type-2 crimes.

– tc,fel and tc,misd are the shares of criminal case time spent on felonies and misdemeanors
of type c. We take the midpoint between minimum and maximum values given in Hunt
et al. (2017) and then adjust such that the shares add to 1. We also set tc,fel equal to
the share for felony larcenies (the type 1 crime with the lowest share) for all UCR-type-2
crimes.

– Ac,t is the number of arrest of type c in Michigan in year t , calculated using the UCR
arrest data for the years 1980-2015.

19The 1990 urban density is used for years prior to or including 1990, the 2000 urban density is used for
years between 1990 and 2000, and the urban density for 2010 is used for years after 2000.

20We used linear interpolation to estimate missing years (1987, 1989, 1990, 1991, 2001, and 2003).
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After adjusting for inflation costs, both police and court costs trend down through the 1980s

and trend up beginning in 1990. Averages across all years are given in Table A3.10.

Correctional Costs

We take our estimates of correctional costs from several reports published by the Bureau

of Justice Statistics. US Department of Justice (1992) reports the annual cost of holding a

person in prison in Michigan to be $31,222 (2017 USD), US Department of Justice (1984)

and US Department of Justice (1990) report the annual cost of holding a person in jail

in Michigan to be $27,064 (2017 USD) and $25,581 (2017 USD), respectively;21 and US

Department of Justice (1988) reports the annual cost of monitoring a person on probation

nationally to be $1,330 (2017 USD).22 We use the prison cost for all incarceration from

felonies, the jail cost for incarceration from misdemeanors, and the probation cost for both

felonies and misdemeanors.

Table A3.6. Average Prison Sentence Lengths for Felonies

Crime Type Treated, PPP Control, PPP National

Murder 20.00 55.00 20.83
Rape 10.08 16.10 13.50
Robbery 33.33 15.10 8.42
Assault 4.50 3.83 5.17
Burglary 8.47 4.82 4.75
Larceny 2.54 7.72 3.17
Motor-Vehicle Theft . 0.25 2.58
Fraud 14.00 1.75 3.75
Drug Offense 14.96 6.80 4.17

Note: This table reports the mean of maximum-sentence lengths assigned at conviction, which is available
in both the PPP and NJRP data. National sentencing statistics are from the National Judicial Reporting
Program (NJRP) for the year 2006.

21We use the average of these two estimates, $26,323 (2017 USD).
22We were unable to locate an estimate of probation costs specific to Michigan.
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Table A3.7. Average Victimization-to-Arrest Ratios by Crime Type

Crime U.S. Midwest

Murder 1.65 2.35
Rape 7.48 9.13
Robbery 5.24 7.72
Assault 2.13 3.11
Burglary 12.83 18.78
Larceny 12.54 11.82
Motor Vehicle Theft 7.93 7.11

Violent Crime 2.97 4.36
Property Crime 12.19 12.32

Note: Violent crime includes rape, assault, and robbery. Property crime includes burglary, larceny, and
motor vehicle theft.

Table A3.8. Crime Categorization Across Data Sources

Category PPP UCRS NCVS

Murder Murder Murder

Rape Rape Forcible Rape
Completed Rape
Attempted Rape

Robbery Armed Robbery Robbery
Robbery w/ Injury
Robbery w/o Injury
Attempted Robbery with Injury

Assault

Aggravated Assault
Assault w/ Intent of Great
Bodily Harm
Assault w/ Intent to Murder
Assault w/ Weapon
Assault/Assault and Battery
Aggravated Stalking
Kidnapping

Aggravated Assault
Aggravated Assault with Injury
Attempted Aggravated Assault

Burglary
Breaking and Entering
Trespassing, Armed
Home Invasion

Burglary
Burglary w/ Forcible Entry
Burglary w/o Forcible Entry
Attempted Forcible Entry

Larceny

Larceny (>$100)
Larceny, in a Building
Theft, of Rental Property
Larceny (<$100)
Larceny, from a Building
Larceny, Shoplifting ($100)

Larceny

Purse Snatching
Pocket Picking
Theft
Attempted Theft

Motor Vehicle Theft
Motor Vehicle Theft
Unlawful Driving Away

Motor Vehicle Theft
Motor Vehicle Theft
Attempted Motor Vehicle Theft
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Table A3.9. Average Costs of Crime to Victims by Crime Type

Crime Type Medical Mental Health Lost Work Lost Property Quality of Life Total

Assault 1, 734 177 1, 192 44 14, 333 17, 480
Child Abuse 9, 708 3, 891 1, 443 7 43, 415 58, 464
Rape 1, 835 4, 108 4, 575 176 152, 683 163, 377
Murder 12, 735 11, 976 1, 828, 638 197 5, 150, 836 7, 004, 382
Robbery 1, 436 156 3, 401 1, 279 13, 004 19, 276
Fraud 0 0 57 1, 854 0 1, 911
Larceny/Theft 0 0 15 465 0 480
Burglary 0 0 23 1, 641 0 1, 664
Vandalism 0 0 0 390 0 390
Vehicle Theft 0 0 102 6, 214 0 6, 316

Note: All figures are taken from Miller et al. (2020) and inflated to 2017 USD.

Table A3.10. Cost of Crime to the Michigan Police and Court System, Averaged for the
Period 1982-2015

Crime Type Police Cost Court Cost Combined Cost

Murder 324,575 42,532 367,107
Rape 45,925 12,461 58,385
Robbery 6,907 2,603 9,510
Assault 26,666 2,015 28,681
Burglary 3,515 2,067 5,582
Larceny 3,162 1,772 4,933
Motor-Vehicle
Theft

2,218 1,908 4,126

Type-2 Crimes 599 1,772 2,371

Note: All figures are inflated to 2017 USD.
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Figure A3.2. Victimization-to-Arrest Ratios, By Crime Type

Figure A3.3. Violent Crime Rates, 1973-2003 and NCVS/NCS Ratio

Notes: The numbers in parentheses indicate the ratio between NCVS (post redesign) and NCS (pre-redesign)
estimates of offense rates. Source: Rand (2006).
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A3.6 Details on the Monetization of Health

We use the FAM and FEM models to monetize health outcomes. These outcomes are gov-

ernmental and private medical expenditure and quality-adjusted life years (QALYs). For

QALYs, we assume that there is no treatment effect before age 30. We apply the MD, OLS

and AIPW estimators as we do with the other outcomes. Missing data on monetized health

outcomes is rare (3.2% in the pooled sample of all individuals of all ages). The instances

of missing data are generated by missing values in the FAM or FEM models’ inputs. These

models are simulated to forecast the life-cycle trajectories of several health outcomes, to then

monetize them into the expenditures and QALYs. We average by age and individual over

the 1,000 simulated life-cycle trajectories, conditional on all data available by age 54. Each

simulated life-cycle path ends with participants’ simulated death at a random age, which

we truncate at age 99. We treat observed deaths before age 54 as a conditioning variable.

Therefore, expected medical costs and QALYs of participants who die before age 54 are set

to 0.

Medicaid costs are shared between states and the federal government. The federal share

for the states is determined by each state’s Federal Medical Assistance Percentage (FMAP;

KFF, 2012). MEPS and MCBS provide data on Medicaid expenditures—state expendi-

tures excluding Medicaid and federal expenditures excluding Medicaid. We estimate costs

and then allocate the Medicaid amount to the state and federal amounts using Michigan’s

FMAP. Historical FMAP values for 1976-2004 were published in the Federal Register.23

Historical and estimated values for 2005-2022 were obtained from KFF’s State Health Facts

database.24 After 2022, we assume that Michigan’s FMAP remains constant at 65%. This

23DHEW Federal Financial Participation in State Assistance Expenditures (1979); DHEW State Assis-
tance Expenditures (1974, 1976) and DHHS Federal Financial Participation in State Assistance Expenditures
(1980, 1982, 1984, 1986, 1987a,b, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1996, 1997b,a, 1999, 2000a,b,
2001, 2002).

24KFF’s State Health Facts (2021) sourced from DHHS Adjusted Federal Medical Assistance Percentage
(FMAP) Rates (2011); DHHS Federal Financial Participation in State Assistance Expenditures (2003a,b,
2004, 2005, 2006, 2010, 2011, 2012, 2014a,b, 2015, 2016); DHHS Federal Matching Shares for Medicaid (2017,
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percentage is the four-year average before the Covid-19 pandemic started in 2020. Using the

FMAP provides us with a conservative estimate of the federal share of Medicaid expendi-

tures because some of the PPP participants might qualify for an enhanced FMAP at various

times during their lifetime. We do not track eligibility for these enhanced FMAPs.

A3.7 Details on the Monetization of Child Outcomes

We illustrate our forecast and monetization of child outcomes using crime. The strategy for

education and labor income is analogous, except for some minor details that we discuss below.

Recall from Section 2 that we age-adjust child-outcome variables because participants have

children at different ages. The age-adjustment is a prediction of the relevant variable based

on age, age squared, sex, treatment status, and the program participant baseline variables

in Table 2 using a Probit model. The predictions have the child outcomes to be age adjusted

as dependent variables. We use age-adjusted variables when monetizing the outcomes of the

children of the original participants in Section 6.

A3.7.1 Crime

The data on crime outcomes of the children of PPP participants are more limited than that

of their parents. We require additional assumptions to estimate intergenerational treatment

effects. Let Yi be the total discounted cost of crime flowing from PPP participant i ∈ P .

Ultimately, we need to assume that data are missing at random. We cannot distinguish

whether data are missing because PPP participants have no children or because items are

missing. Our estimator relying on this assumption throughout, and our estimator accounting

for missing data yield very close results throughout the paper.

2018, 2019, 2020); DHHS Implementation of Section 5001 of the American Recovery and Reinvestment Act
of 2009 (2009, 2010).
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Our strategy relies on assuming the benefits from crime are mediated by an early-adulthood

crime behavior. Formally, let A(a) indicate whether a participant has ever been arrested

at age a. Assume that there exists an a such that Y |= D ,Z
∣∣ A(a). That is, the benefits

from crime are independent of treatment when conditioning on covariates (Z ) and the arrest

indicator A(a). Preliminary analysis indicates that this assumption holds when a = 22 and

predicts well the benefits from crime. We write

E[Y
∣∣ D ,Z ] =E[Y

∣∣ D ,Z ,A(22) = 1]P(A(22) = 1
∣∣ D ,Z ) (A.12)

+ E[Y
∣∣ D ,Z ,A(22) = 0](1− P(A(22) = 1

∣∣ D ,Z ))

=E[Y
∣∣ A(22) = 1]P(A(22) = 1

∣∣ D ,Z )+

+ E[Y
∣∣ A(22) = 0](1− P(A(22) = 1

∣∣ D ,Z )).

In practice, we regress the benefits from the crime outcome (Y ) on (A(22)) to obtain esti-

mates for an intercept (χ0) and a slope (χ1). Next, we assume that the relationship between

A(22) and Y is invariant. That is, the relationship estimated in the sample of the PPP

participants is valid for their children. Let Y c be the crime outcome or benefit of a child

of a PPP participant and Ac(22) their corresponding crime behavior. We assume that,

conditional on Ac(22), their parent’s treatment status (D) and Y c are independent. We

deconstruct

E[Y c
∣∣ D ,Z ] =E[Y c

∣∣ Ac(22)]P(Ac(22) = 1
∣∣ D ,Z ) (A.13)

+ E[Y c
∣∣ Ac(22) = 0](1− P(Ac(22) = 1

∣∣ D ,Z )).

The data on PPP children contains only one indicator of whether a child has ever been

arrested. The age for which this indicator is reported varies (PPP participants had children

at different ages). Thus, we predict the Ac(22) using a Probit model. This allows us to use

(predicted) behavior at the same age when applying the invariant relationship estimated in
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the sample of PPP participants. Section 2 explains and summarizes all of the predictions that

we use. Our treatment effect estimate follows from the identifying assumption of random

assignment E[Y c
∣∣ D = d ,Z ] = E[Y c,d |Z ] and is the difference between the prediction of

E[Y c
∣∣ D = d ] for treatment and control group.

A3.7.2 Education

We proceed in the same way as with crime when monetizing education. In this case, the

behaviors that we use to predict or mediators are w1(18),w2(20),w3(25), and w4(25) which

represent “ever special education,” “completed high-school,” “some college,” and “completed

college” at the ages indicated in brackets. To monetize costs of education for children,

we use figures from National Center for Education Statistics and United States. Office

of Educational Research and Improvement. Center for Education Statistics and Institute of

Education Sciences (US) (2000), inflated to 2017 USD. For each student (full-time equivalent)

and year, these are $29,181 for college, $11,376 for regular K-12 education and $24,685 for

special education (assuming that the cost ratio for regular school to special education of

1:2.17 still holds).

A3.7.3 Income

For income, we proceed in the same way as with education and use the same predicting

behaviors in addition to “employed.” There are two practical differences: 1) We add in-

teraction terms into the prediction regression in Equation (5). We add the interactions of

“completed college” with “ever arrested” and “completed high school” with “employed.”

These interactions allow us to capture better the dynamics of labor income in Figures 1a

and 1b; and 2) We account for wage growth. To do that, we calculate the rate of real growth

in labor income from US Census Bureau (2020) (0.98% p.a. for the middle quintile of house-

hold income in the US). Then, for each year of participant age until the child’s birth year,
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we apply this growth rate to the PPP participants’ children’s predicted labor income.
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A4. Appendix to Section 4

Additional Estimates

In this section we present three sets of additional estimates. First, we present supplemental

estimates that include the gain in terms of QALYs from lower crime victimization in Ta-

ble A4.1. Second, we present sensitivity analysis of estimation choices using Table 3 as a

benchmark (these estimates are in Appendix Table A4.2). Third, we replicate Table 7 in

the paper, which presents dynastic benefits, using Linear Probability Models (LPMs) and

Logit Models instead of using Probit models as in the paper to predict child behaviors (these

estimates are in Appendix Tables A4.3 and A4.4).
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Table A4.1. Life-Cycle Present Value and Benefit-Cost Ratio for the Original Participants
of the Perry Preschool Project, Main and Supplemental Results

Baseline in Table 3 Add Crime QALY Costs

Present Values in 1,000s of 2017 USD Estimate (%∆) Estimate (%∆)

Education Present Value

Total 0.27 (-.29%) 0.27 (-.29%)

[s.e.] [2.60] [2.60]

Income Present Value

Transfers† 5.90 5.90

Federal Taxes 10.96 10.96

State Taxes 2.74 2.74

After-Tax Labor Income 43.43 43.43

Total 61.58 (50%) 61.58 (50%)

[s.e.] [32.27] [32.27]

Crime Present Value

Criminal Justice System Cost 19.21 19.21

Monetary Cost to Victims 60.13 60.13

QALY Cost to Victims 174.47

Total 79.34 (-47%) 253.81 (-48%)

[s.e.] [65.10] [214.99]

Health Present Value

Government Expenditure -2.00 -2.00

Private Expenditure -9.00 -9.00

QALY 59.66 59.66

Total 48.69 (4.1%) 48.69 (4.1%)

[s.e.] [78.50] [78.50]

Overall Total Present Value 189.88 (18%) 364.35 (54%)

[s.e.] [108.51] [228.16]

Benefit-Cost Ratio

Baseline Program Cost 8.98 17.23

[s.e.] [5.13] [10.79]

Add Deadweight Loss (50%) 5.98 11.48

[s.e.] [3.42] [7.19]

Note: This table summarizes our preferred estimates of the monetized average life-cycle treatment-control
difference or present value of the Perry Preschool Project for the original participants in Table 3, as well as
the corresponding benefit-cost ratios. It also presents supplemental estimates that include the gain in terms
of QALYs from lower crime victimization. We bold (italicize) the present values per outcome total and overall
total and benefit-cost ratios when they are significant at the 10% (5%) level based on their bias-corrected
accelerated bootstrap confidence intervals. The null hypothesis for the present value per outcome is that it
is less than or equal to 0. The null hypothesis for the overall total is the same. The null hypothesis for the
benefit-cost ratio is that it is less than or equal to 1. The present values are adjusted for compromises in the
randomization protocol, attrition, and item non-response. They are in 2017 US dollars and discounted to the
year in which the program started using a rate of 3%. We show the present value per outcome, the overall
total (addition of outcome totals), the benefit-cost ratio using the baseline total program cost (21,151 of
2017 US dollars), and the benefit-cost ratio multiplying by 1.5 the baseline total program cost to account for
the deadweight that would be generated by collecting the taxes required to fund the program. The standard
errors in brackets are bootstrapped and clustered at the household level.
%∆: For the outcome total and overall total present values, we show in parentheses the percentage change
in the average present value for the treatment group relative to the average present value for the control
group.
†Transfers that the government would have provided to individuals had they not increased their labor income
due to treatment. This component is decomposed from the observed before-tax labor income, not counted
as an additional gain.
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Table A4.2. Life-Cycle Present Value and Benefit-Cost Ratio for the Original Participants of the Perry Preschool Project,
Sensitivity Analysis of Estimation Choices

Present Values in 1,000s of 2017 USD Income Model Life-Cycle Segment Set Outcome 0

(Baseline) (Observed, 16− 40) (Full records for Education, 16− 40 for (None)

(16− 40) (16− 60) Income and Crime, 30-Death for Health)

Change from Baseline Linear Interpolation Garćıa et al. (2020) 0− 20 21− 40 41− 54 55–Death Education Income Crime Health

Education Present Value

Total 0.27 0.27 −1.67 2.40 0.27 0.27 0.27

[s.e.] [2.42] [2.42] [2.08] [1.59] [2.42] [2.42] [2.42]

Labor Income Present Value

Federal Taxes − Transfers 20.04 16.82 2.69 14.27 −2.95 −0.33 16.86 16.86 16.86

State Taxes 3.21 2.82 0.28 2.48 −0.27 −0.03 2.74 2.74 2.74

After-Tax Labor Income 43.74 43.33 2.68 39.69 −2.63 −0.21 43.43 43.43 43.43

Total 66.99 62.97 5.65 56.44 −5.86 −0.57 61.58 61.58 61.58

[s.e.] [29.20] [40.80] [6.10] [28.60] [18.91] [1.50] [30.06] [30.06] [30.06]

Crime Present Value

Criminal Justice System Cost 19.21 19.21 −9.68 28.90 −0.81 19.21 19.21 19.21

Monetary Cost to Victims 60.13 60.13 −28.81 88.96 −1.72 60.13 60.13 60.13

Total 79.34 79.34 −38.49 117.86 −2.53 79.34 79.34 79.34

[s.e.] [60.30] [60.30] [27.68] [50.79] [2.67] [60.30] [60.30] [60.30]

Health Present Value

Government Expenditure −2.00 −2.00 0.02 2.29 0.46 −5.02 −2.00 −2.00 −2.00

Private Expenditure −9.00 −9.00 0.02 −2.34 −2.60 −4.10 −9.00 −9.00 −9.00

Quality-Adjusted Life Years 59.69 59.69 0.00 24.49 18.32 21.66 59.66 59.66 59.66

Total 48.69 48.69 0.04 24.45 16.18 12.54 48.69 48.69 48.69

[s.e.] [72.61] [72.61] [0.21] [26.49] [26.33] [25.44] [72.61] [72.61] [72.61]

Overall Total Present Value 195.29 191.27 −34.48 201.15 7.80 11.97 189.60 128.30 110.54 141.19

[s.e.] [99.36] [109.92] [29.55] [65.47] [37.70] [25.90] [100.76] [87.90] [84.19] [71.76]

Benefit-Cost Ratio

Baseline Program Cost 9.23 9.04 −1.63 9.51 0.37 0.57 8.96 6.07 5.23 6.68

[s.e.] [4.70] [5.20] [1.40] [3.10] [1.78] [1.22] [4.76] [4.16] [3.98] [3.39]

Add Deadweight Loss (50%) 6.16 6.03 −1.09 6.34 0.25 0.38 5.98 4.04 3.48 4.45

[s.e.] [3.13] [3.46] [0.93] [2.06] [1.19] [0.82] [3.18] [2.77] [2.65] [2.26]

Note: The columns in this table summarize specifications that vary one aspect of our preferred specification, Table 3. We vary the strategy
for calculating the labor-income benefits—from the baseline using observation only to interpolating as explained in Section 3 or interpolating and
extrapolating using the method in Garćıa et al. (2020) and the age-range considered. We also consider specifications setting the present value to 0
for each of the outcomes, one at a time. Empty entries indicate that component is set to 0 in column specification. The standard errors in brackets
are bootstrapped and clustered at the household level.

50



Table A4.3. Dynastic Present Value and Benefit-Cost Ratio of the Perry Preschool Project Using LPM-Predicted Child
Outcomes

[1] [2] [3] [4] [5]

1st Generation Siblings Children Dynasty Extended Dynasty

Present Value in 1,000s of 2017 USD (Original Participants) (Intragenerational) (Intergenerational) ([1]+[3]) ([1]+[2]+[3])

Education Present Value 0.27 -1.42 -0.74 -0.47 -1.89

[s.e.] [2.57] [2.98] [0.72] [2.75] [4.24]

Income Present Value 64.25 56.79 26.56 90.81 147.60

[s.e.] [29.79] [33.22] [20.36] [37.48] [54.88]

Crime Present Value 79.34 5.23 7.82 87.16 92.39

[s.e.] [67.86] [41.81] [7.38] [70.35] [85.50]

Health Present Value 48.69
N/A? N/A?

48.69 48.69

[s.e.] [75.23] [75.23] [75.23]

Overall Total Present Value 192.55 60.61 33.64 226.19 286.80

[s.e.] [106.58] [55.59] [23.51] [110.96] [131.37]

Benefit-Cost Ratio

Baseline Program Cost 9.10 2.87 1.59 10.69 13.56

[s.e.] [5.04] [2.63] [1.11] [5.25] [6.21]

Add Deadweight Loss (50%) 6.07 1.91 1.06 7.13 9.04

[s.e.] [3.36] [1.75] [0.74] [3.50] [4.14]

Note: This table summarizes the monetized average life-cycle treatment-control difference of the Perry Preschool Project for the original par-
ticipants (first generation), their siblings, their children (second generation), the dynasty (addition of the first and second generations), and the
extended dynasty (addition of the first generation, their siblings, and the second generation). All figures are discounted to the year in which the
program started using a rate of 3%. For the participants, we consider our main estimates using the OLS estimator. For the siblings and the children
of the participants, we use the method explained in Section 6. We display the present value per outcome, the overall total (addition of outcome
totals), the benefit-cost ratio using the baseline program cost (21,151 of 2017 US dollars), and the benefit-cost ratio multiplying by 1.5 the base-
line program cost to account for the deadweight that would be generated by collecting taxes required to fund the program. The standard errors in
brackets are bootstrapped and clustered at the original-participant household level. We bold (italicize) the present values per outcome and overall
totals and benefit-cost ratios when they are significant at the 10% (5%) level based on their bias-corrected accelerated bootstrap confidence inter-
vals. The null hypothesis for the present value per outcome is that it is less than or equal to 0. The null hypothesis for the overall total is the same.
The null hypothesis for the benefit-cost ratio is that it is less than or equal to 1.
?N/A means not available (health is not monetized for the siblings and the children).
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Table A4.4. Dynastic Present Value and Benefit-Cost Ratio of the Perry Preschool Project Using Logit-Predicted Child
Outcomes

[1] [2] [3] [4] [5]

1st Generation Siblings Children Dynasty Extended Dynasty

Present Value in 1,000s of 2017 USD (Original Participants) (Intragenerational) (Intergenerational) ([1]+[3]) ([1]+[2]+[3])

Education Present Value 0.27 -1.42 -1.01 -0.74 -2.16

[s.e.] [2.57] [2.98] [0.81] [2.80] [4.27]

Income Present Value 64.25 56.79 27.54 91.79 148.59

[s.e.] [29.79] [33.22] [27.54] [43.74] [58.60]

Crime Present Value 79.34 5.23 5.77 85.11 90.35

[s.e.] [67.86] [41.81] [5.65] [70.04] [85.15]

Health Present Value 48.69
N/A? N/A?

48.69 48.69

[s.e.] [75.23] [75.23] [75.23]

Overall Total Present Value 192.55 60.61 32.30 224.86 285.46

[s.e.] [106.58] [55.59] [29.49] [113.02] [133.11]

Benefit-Cost Ratio

Baseline Program Cost 9.10 2.87 1.53 10.63 13.50

[s.e.] [5.04] [2.63] [1.39] [5.34] [6.29]

Add Deadweight Loss (50%) 6.07 1.91 1.02 7.09 9.00

[s.e.] [3.36] [1.75] [0.93] [3.56] [4.20]

Note: This table summarizes the monetized average life-cycle treatment-control difference of the Perry Preschool Project for the original par-
ticipants (first generation), their siblings, their children (second generation), the dynasty (addition of the first and second generations), and the
extended dynasty (addition of the first generation, their siblings, and the second generation). All figures are discounted to the year in which the
program started using a rate of 3%. For the participants, we consider our main estimates using the OLS estimator. For the siblings and the children
of the participants, we use the method explained in Section 6. We display the present value per outcome, the overall total (addition of outcome
totals), the benefit-cost ratio using the baseline program cost (21,151 of 2017 US dollars), and the benefit-cost ratio multiplying by 1.5 the base-
line program cost to account for the deadweight that would be generated by collecting taxes required to fund the program. The standard errors in
brackets are bootstrapped and clustered at the original-participant household level. We bold (italicize) the present values per outcome and overall
totals and benefit-cost ratios when they are significant at the 10% (5%) level based on their bias-corrected accelerated bootstrap confidence inter-
vals. The null hypothesis for the present value per outcome is that it is less than or equal to 0. The null hypothesis for the overall total is the same.
The null hypothesis for the benefit-cost ratio is that it is less than or equal to 1.
?N/A means not available (health is not monetized for the siblings and the children).
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