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Basic Objective 

 

This paper provides a systematic analysis of identification in linear social 

networks models.  

 

This is both a theoretical and an econometric exercise in that it links 

identification analysis to a rigorously delineated model of interdependent 

decisions.   
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Overview of Contributions 

 

1.  Microeconomic foundations of linear social interactions models are 

fully delineated in a Bayes-Nash framework. 

 

2.  Disparate identification findings are placed in a common framework. 

 

3.  Identification is shown to be generic when analyst has complete priori 

knowledge of social structure, the standard case in the literature.  

 

4.  Identification is possible with partial a priori knowledge. 

 

5.  Effects on endogeneity of networks are discussed.   
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Microfoundations 

 

Linear social interactions models may be understood as Bayes-Nash 

equilibrium strategy profiles. 

 

For this game, the set of players is V  of size N  .    

 

Each individual is described by a vector of characteristics  ,
i i

x z . 
i

x R  is 

observable  while 
i

z R  is not. An individual’s type vector 
i

t  is a vector 

  1, N

i
x z R  

 

  is an exogenous prior distribution on types and is common knowledge. 
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Each individual chooses an  
i

R .  Individual i ’s utility is a function of his 

type, his action, and the actions of others in the population.  His payoff 

function is 

 

 

   
2

2

,

1

2 2

i i i

i i ij j i i i ij j
j j

U

x z c x a

 


     



 



    
 

 

This specification embodies two types of social interactions 
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The term 
,i j j

j

c x is known as contextual effect. It is a conventional 

externality, network average characteristics are a kind of group capital or 

public good.   

 

The term   
2

2
i ij j

j

a

    is known as an endogenous or peer effect. It 

represents a general version of conformity. 

 

Key difference is that contextual effects involve characteristics, 

endogenous effects involve choices.  
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Sociomatrices 

 

The strength of the direct impact of the choices and characteristics of 

others on each member of the population are summarized by the 

sociomatrices A  and C , whose elements are taken from the individual 

utility functions. 

 

These sociomatrices characterize what is meant by social structure. 
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Assumptions for Theoretical Analysis 

 

T.1.   0,A and C  are non-negative, each row sums to either 0 or 1, and 

for all ,i   0.
ii

a  

 

T.2. Second moments of   exist. 
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T.1. Restricts the payoff function.  

 

Non-negativity delimits the types of social interactions under study. 

 

Row-summability allows for a meaningful distinction between intensity of 

social preferences and social structure. 

 

0
ii

a   formalizes the conformity interpretation for endogenous effects. 

 

T.2. ensures that expected utility is well-defined for a large set of potential 

strategies.  
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A strategy for individual i  is a function that assigns an action to each of his 

possible types, a function 1: .N

i
f  R R    

 

A Bayes-Nash equilibrium BNE of the game is a strategy profile  
i i V

f  such 

that each 
i

f  maximizes   , ,
i i i i

E U x z 


 where the expectation is taken 

with respect to the strategies 
 i

f  and the common prior  .   
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Theorem 1. Assume the sociomatrices satisfy T.1.  For any prior 

distribution   satisfying T.2, there exists a unique BNE. The equilibrium 

strategy profile can be written in the form 

 

 

   
1

,

1 1
,

1 1 1

f x z

I A I C x x z z


  
  





 
    

   

 

 

 ,x z  captures the role of higher order beliefs.    ,x z z  if z

independent of x . We can treat as part of constant term and ignore. 
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An Observationally Equivalent Structure 

 

Suppose that  

 

 

  2

,

,

1

2

i i i

i i i j j i i ij i j
j j

U

x z c x a

 

     



 



   
 

 

This preference structure involves spillovers in, say, educational costs 

rather than conformity. 

 

The first order conditions for this model are, in form, identical to the 

conformity model. Hence the two preference structures are 

observationally equivalent. 
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From a Theoretical to an Econometric Model 

 

In order to render the theoretical model econometrically useful, additional 

assumptions are needed. 

 

E.1. The support of x  has dimension N . 

E.2. For all i  and j , 0
ij

a   iff 0
ji

a  . For some i  and j  0
ij

a   

E.3. For all i  and j , 0
ij

c   iff 0
ji

c  . For some pair i j  0
ij

c   

E.4. For all i  and j , 
i

x  and 
j

z  are uncorrelated. 

E.5. At least one of   and   is non-zero. 
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E.1 ensures uniqueness of the reduced form projection of outcomes on 

observable characteristics.  

 

E.2 and E.3 shrink the size of the parameter space. This simplifies 

derivations and comes at little cost since magnitudes are not restricted. 

 

E.4. is the standard exogeneity assumption. It means the higher order 

beliefs term is restricted to  z ; we relax this later. 

 

E.5. eliminates the special case in which x  has no effect on outcomes. 
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Data Assumption 

 

K.1.  For all i , the analyst observes  ,
i i

x  

 

 

This simply means individual-level data are available. 
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Identification 

 

Definition 1.  A structure s  for the linear social network model is a list 

, , , , ,A C    , where  ,   and   are utility parameters. A  and C  are 

peer- and contextual-effects sociomatrices, and   is the a priori 

probability distribution on  . A model is a set of structures. 

 

Definition 2.  Utility parameters  ,   and   are identified in a 

model Mby B  if for all ,s s M , if    B s B s  then    , , , ,        . 
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Theorem 2.   Under .1 .2T T , .1 .5E E , and .1K   

 

i. B ,  z  and    are identified. 

ii. ,   and   are not identified. 

 

Hence additional information is needed to recover model primitives. 
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Relation to Extant Literature 

 

Standard models in the literature are special cases of our framework. 

Note: the literature focuses on first order conditions rather than equilibrium 

strategy profiles.  
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Example 1: Linear-in-Means Model 

 

The most common linear interaction model is the linear-in-means model, 

in which the population is partitioned into nonoverlapping groups g , no 

intergroup social interactions are present and unweighted averages 

summarize intragroup interactions.  
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Letting gn  denote the population size of group g , these restrictions may 

be expressed as  

 

1
 if , ,

1
 if , ,

1

0 if ,

ij g

ij g

ij ij

c i j g
n

a i j g
n

c a i g j g
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which produces the first order condition 

 

     
 

1

1 11 1 1 1

i

i j j ig g
j j i

x x E x
n n



  
 

   



  
    

 
 

 

This model has been shown to be identified when gn  varies. 
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In contrast, the Manski (1993) reflection problem for nonidentification 

holds for the large sample limit of this model. 

 

   
 

1

1 1 1 1

i

g g

i ix x E x
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Comments 

 

1.  Identification does not carry over to large sample approximations, 

hence such approximations can be misleading when used in studying 

identification. 

 

2.  Linear-in-means approach is a very strong assumption. 
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Neighborhood Generalizations of the Linear-in-Means Model 

 

A second class of models, typically employed when data on network 

structure are available, associates with each agent i  a group of others to 

whom he is directly connected. These others define the neighborhood.  

The effect of the neighborhood on an individual mimics the original linear-

means model. 

 

1
 if ,

1
 if ,

1
0 if 

ij h

ij h

ij ij h

c j h
n

a j h
n

c a j h
n
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Comments 

 

1.  This model also represents a substantive restriction on preferences. 

 

2.  Identification seems to typically hold, without any requirement on 

neighborhood size heterogeneity per se. 
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Questions 

 

How do the positive identification findings link to Theorem 2? 

 

Can disparate results be understood in a common framework?  

 

Can identification be achieved under weaker preference assumptions? 

 

These motivate the rest of the analysis.  
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Identification with Known Sociomatrices 

 

The extant literature on identification is based on the assumption that the 

analyst knows the sociomatrices. This is why Theorem 2 does not 

contradict positive identification findings. 

 

Formally 

 

K.2. A and C  are exogenous and known to the analyst a priori. 
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A Condition for Identification 

 

Bramoullé, Djebbari, and Fortin (2009) provide a powerful identification 

requirement for the traditional linear-in-means model that provides a 

connection between identification and network structure. The next result 

extends this to our two-sociomatrix model. 
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Theorem 3. Suppose T.1-T.2, E.1-E.5, and K.1-K.2 

  

i. If ,A C  and AC  are distinct, then linear independence of , , I A C  is 

necessary and sufficient for identification of   ,   and   are identified from 

the joint distribution of   and x . 

 

ii.  If A C  and AC C , and 0  then linear independence of , , I A and 

AC  id necessary and sufficient for identification of  ,   and   are 

identified from the joint distribution of   and x . 
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Characterizing the Failure of Identification 

 

Identification will fail, according to Theorem 3, if 

 

1 2 3

2 4 3

0 for all ,

0 for all 

ij ij ji

j

ij ij ij ji

j

c a c i

c a a c i j

  

  

  

   




 

 

One can thus consider the set of sociomatrices  ,A C  such that this linear 

dependence condition holds.  
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Genericity of Identification 

 

The identification literature on social interactions focuses on specific 

choices of A and C . Can something more general be said? 

 

We focus on genericity.  

 

Idea: Characterize set of A , C  pairs that fulfill conditions for our 

econometric model. This set will have a certain dimension. Then 

characterize subset of original set in which identification of utility 

parameters does not hold. If the dimension of the latter set is lower than 

the former, identification is generic. 

 



31 
 

 

Blume, Brock, Durlauf, and  Ioannides (2011) examine the case in which  

A C  under much stronger error assumptions. 

 

The relaxation of the error assumptions is relatively straightforward, albeit 

important for empirical relevance. 

 

Relaxation of assumption A C  leads to different results. In particular, 

one needs some additional structure beyond compatibility with T.1-T.2 and 

E.1-E.5 which do not arise under A C . 

  

 

 



32 
 

 

Corollary 1.   

 

For each sociomatrix A  such that the network contains at least one 

component of size 3, there is a generic subset of contextual sociomatrices 

C  such that  ,  ,  and   are identified. 
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Corollary 2. 

 

Suppose that there are distinct individuals i  and j  who are connected by 

a series of links, some in the endogenous effects network and some in the 

contextual effects network, but who are not connected in either network in 

isolation. Then, ,  ,  and   are identified. 
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Corollary 3 

 

Suppose that there is a component of the contextual-effects matrix C  such 

that the all 
ij

c  are equal and assume that any component of of peer effect 

network is either a subset of or disjoint from the contextual effects 

component. Suppose there also exist two pairs of individuals i j  and 

k l  in the contextual effects component such that 
ij kl

a a . Then, ,  ,  

and   are identified. 

 

Note: The linear-in-means model assumes all elements of A are equal 

and all elements of C  are equal. A single deviation among the 
ij

a ’s 

produces identification.  
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Why is Identification Generic under Such Conditions? 

 

The first order conditions for linear social interactions models have a very 

similar structure to linear simultaneous equations systems. 

 

A priori knowledge of A  and C  reduces the number of unkwown 

parameters to 3.   

 

Identification fails when there is too much symmetry in the system. 
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ii. aggregation 

 

Classroom-level and village-level data often come aggregated. For 

example, an education data set may contain observation on mean 

outcome and mean characteristics of many classrooms.   

 

Glaeser, Sacerdote, and Scheinkman (1996,2003) and Graham (2008) 

study this case. 
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For our context, we think of data as drawn from nonoverlapping groups. 

Utility parameters are constant across groups, but groups may differ in 

size and in values of sociomatrices. 
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Assumptions 

 

K.1’. For all g , gA  and   gC  are exogenous and known to the analyst a 

priori. 

K.2’. For all g, the analyst observes  ,g gx   

K.3’.  var gx  and  var g  are observed. 

 

E.6. For g

i
x  and g

i
  are iid. 
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This stronger assumption on the unobserved heterogeneity means that 

 

 
 

2 2

2 2

2

1 1 1

1

g g

ij x g
g

j g i g

Var B
nn

  
 

   
    

  
   

 

which follows from  

 

 
1 1 1

1

g g g g

ij j ig g
j g i g i g

B x
n n

    
  

 
    

 
    

 

 

 

 



40 
 

 

Theorem 4. Under T.1-T.2, E.1-E.6, and K.1-K.3, Suppose that ,  ,  and 

  nonzero. Suppose that 5G   and that for each 1...5g  ,  3gn   and no 

gA  is bistochastic. Then the set g

Cg
J M   of matrices 1 5...C C such that  

1 5
...   does not identify ,  ,  and   is of lower dimension than g

Cg
M . 
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Theorem 4 says when data are in the form of group averages, second 

moments can be used to identify the utility parameters provided that the 

 ,g gA C  pairs fulfill a condition on 
g

C  that, given 
g

A , holds generically.  

 

In addition, one needs a certain degree of variation across the 

sociomatrices to allow for the different groups to provide distinct second 

moments from which the utility parameters can be backed out. 
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Identification with Mixed Individual-Level and Aggregate Data 

 

We conclude this section by considering linear social interactions models 

that are based on a combination of individual-level and aggregate data.  

 

A number of studies, including many in the important first generation of 

empirical social interactions research, combine individual-data from the 

Panel Study of Income Dynamics (PSID) with averages of individual 

outcomes based on the geographic identifiers in the PSID.  
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The sampling scheme for the PSID, when combined with aggregate 

information, produces regressions of the form  

 

0 1 2

g

i i i
b b x b x      

 

where g  denotes the relevant level of aggregation.  

 

This regression, to be interpretable as an equilibrium strategy profile, 

requires that the linear-in-means sociomatrices are the true ones, and that 

the aggregation level defines actual social groups.  
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Since the sampling scheme we describe provides no information on 
g

A and 

g
C , this equation represents an information reduction relative to the 

equilibrium best response function that describes 
i

 .  We have already 

showed is not identified when these matrices are unknown. This 

individual/aggregate regression is misspecified so its parameters will 

depend on , , , gA    and gC . 

 

The one positive use of this equations is that if 
2

0b  , then neither peer 

nor contextual effects are present in the preferences of agents.  
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Identification with Partial Information on Social Structure 

 

The assumption that the sociomatrices A and C  are known is clearly very 

strong. 

 

The common weights in the linear-in-means model are not theoretically 

motivated. Models employing empirically generated sociomatrices 

assume that these matrices are functions of observed adjacency matrices, 

which is also not theoretically motivated. 

 

It turns out that identification or partial identification holds under weaker 

information assumptions. 
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i. unknown peer-effects sociomatrices 

 

We first consider the case wherein the contextual effects sociomatrix is a 

priori knowledge, but the peer-effects sociomatrix is unknown to the 

econometrician.   

 

A priori knowledge of contextual effects is more natural than endogenous 

effects as the latter is psychological. In contrast, public goods games can 

provide a priori knowledge of C .  Of course, plausibility will depend on 

“context.” 
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Additional Assumptions 

 

E.6.     is not an eigenvalue of C . 

 

E.7.  0  . 

 

E.6  ensures that B  is nonsingular. 

 

E.7.  is for analytical convenience. 
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Theorem 5.   

 

Assume that contextual-effects sociomatrix C  is known a priori. Assume 

too that the peer-effects sociomatrix A is unknown but the peer-effects 

network is known a priori.  Suppose that 3N  . Suppose that there are 

two distinct individuals j  and i  who are known to be unconnected in the 

peer-effects network. If 1 0jiB  , then the utility parameters  ,   and   are 

identified from the conditional mean of   given x . 

 

This theorem is of interest because under a weak type of partial knowledge 

on A, identification holds. 
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One can do even better using second moments. 

 

Theorem 6.   

 

Suppose only the contextual-effects sociomatrix C  is known.  If 3N  , 

then for each CC M  there is a generic subset A AS M such that if AA S

, then  ,   and   are also identified in CM  by the conditional mean of 

outcomes given characteristics. 
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Finally, one can even recover the A matrix. 

 

Corollary 4.  

 

Under the conditions of theorem 6, the peer-effects sociomatrix A  is 

identified. 

 

Why is this possible?  The dimension of the set of peer effects matrices is 

 2N N  . The dimension of the set   *:B m C C  for a fixed *C  is no 

more than  1 1N N   , but we can show it to be no less than  2N N  .  

One needs to recover  2 3N N    parameters from B ; the corollary 

shows this is possible. 
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ii. Identification with a priori “qualitative” network knowledge 

 

 

Data sets such as AddHealth provide information on direct links between 

agents. They do not report intensities of the bilateral interactions. 

 

These data provide adjacency matrix information.  This provides a path to 

identification that is analogous to the use of exclusion restrictions in 

classical simultaneous equations analysis. 
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From the reduced form, self-consistency of beliefs means that for agents 

agents other than j ,  
j j

E b x  . Therefore 

 

1 2 3

,

1

1 1 1 1

1

1

C A

C A

i

ii
i ij j ij j i

j i j i

i j j j j i

j i j i j i

c
x c x a b x

x x b x



   


   

   





  

   

   


 

 

 

 

where ij A  means 0
ij

a  , etc. 
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Theorem 7.   

 

Assume T.1T.2, E.1, E.4, E.5, and K.1.  Suppose that the only a priori 

information about A and C  is, for some individual  i , the sets  :
A

j j i  

and  :
C

j j i . For an individual  i , consider the following three conditions. 

 

1.     # # 1.
C A

j i j i N    

2.     1 # #
C A

N j i j i   . 

3.     # # .
A C

j i j i  

 

If conditions 1 and 2 are satisfied, then for each   and   there is a generic 

set of contextual-effects matrices C  such that the utility parameters are 
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identified. If conditions 1 and 3 hold, then there is a generic set of peer-

effects matrices A such that the utility parameters are identified. 

Key to Proof 

 

Consider 

   
 

1

1 1 1 1

i

i ij j ij j i

j j

x c x a E x



  
 

   



  
   

 
 

 

Replace  jE x  with  jproj x ; conditions of theorem essentially 

require that regressors in this expression are linearly independent after 

this substitution. This is classical simultaneous equations! 
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Implications 

 

Theorem 7 says that under certain conditions, holes in the network can 

enable identification: they serve as exclusion restrictions, which can be 

exploited to back out the utility parameters. Theorem 7’s necessary 

condition is an order condition.  
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One way to understand this theorem is that the individual-level equation is 

similar to the second stage of a two-stage least-squares estimation 

procedure.  

 

The differences between the classical results and ours lay in the fact that 

in the classical case identification of the second-stage parameter 

estimates is not an issue, and the rank and order conditions have to do 

with backing structural parameter estimates out of the second-stage 

estimates. Here, in contrast, the issue is identifying the parameters 
i

  from 

which the structural parameters need to be recovered.. 
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Finally, note that typically ii C  and in this case the necessary condition 

is that the total number of links emanating from i in either network not 

exceed N . 

 

This means that sparse networks are needed for identification based on 

adjacency matrices. 
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Our results also suggest a potentially serious limitation in current surveys, 

specifically Addhealth, which is arguably the most popular data set for the 

study of social network effects.  

 

Its main draw is that high school students in its nationally representative 

sample are interviewed not only about the usual demographic and 

outcome variables of interest, but also about who their friends are.  

 

  



59 
 

 

Unfortunately, the data set’s friendship questions are restricted in that 

each student is allowed to name up to 5 friends of each gender. This has 

important ramifications in view of the result in theorem 5, which indicates 

that it is more useful to know who is not someone’s friend rather than who 

is.  

 

Moreover, the restriction on the number of friends means that the failure 

to identify someone as a friend does not mean that there is a 

corresponding zero in the associated sociomatrices.  
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While the limitation on the number of friends that could be named in the 

interviews has long been understood as inducing measurement error in 

network structure, as far as we know, the effects of this limitation on 

identification per se have not been recognized. 
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iii. identification with aggregated social network data.  

 

We conclude with an evaluation of the individual/group average pairing 

discussed above.  Following our earlier discussion, we focus on the case 

in which the peer effects matrix is unobserved and. 

 

K.1. C  is exogenous and known to the analyst. 

K.2. The analyst observes  1 1, , ,g gx x  .  

E.8.  
i

x  is i.i.d. across members of g  
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Under these information assumptions, available information are 

summarized by 

 

 

   

   

, ,

, ,

g g g g

i i gi i

g g

i i i i i ii i

E x x b E x x x b x

E x x b E x x x b x
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Theorem 8.   

 

Assume T.1T.2 and E.1E.4 and E.8, and suppose that  iE x .  

Assume that for some i , A CB


 has full row rank,  # : Aj j i . Then 

     is identified, and   is not identified. 
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Theorem 8 shows that the assumption of a linear-in-means structure 

entails too great a loss of information to allow for identification of the utility 

parameters. As in other cases, if the projection of 
i

  onto 
i

x  and 
i

x

differs 

from the projection of 
i

  onto 
i

x , then all one can say is that some sort of 

social interaction is present. 

 

 

This is a cautionary message given the ubiquity of these models in 

empirical practice. 
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Endogeneity of Social Structure 

 

A natural way to extend our model of social interactions to network 

formation is to make it the second stage of a two-stage game, in which 

networks are formed in the first stage and actions are determined in the 

second.  For each possible network there exists a unique second stage 

equilibrium, and each individual’s expected utility of this second-stage 

equilibrium is a value function for the network which gives payoffs for the 

first-stage game. 
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Self-selection and its attendant problems arise when both x  and   are 

available to individuals when choosing their first-stage action. 

 

In these models each individual’s utility of a given network is the expected 

utility of equilibrium outcomes with that network in the second stage, 

conditional on information available in the first stage.  
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Suppose that x  and   are available at the outset of the first stage. The 

expected second state payoff will depend upon both of these variables, 

and so both will influence individuals’ first-stage choices. Consequently, 

an individual i , observing that he is linked to j , and seeing 
j

x , can make 

an inference about the value of 
j

z  that is informed by 
j

x .  

 

Thus E.4 is violated as  ,x z  is not independent of x  and second-stage 

equilibrium will no longer be linear in x. (They are, however, still described 

by theorem 1.)  
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This is the selection problem.  

 

It is not just a statistical issue — it affects the basic structure of equilibrium, 

because it affects inference not only of the econometrician but of 

individuals constructing the network. 

 

We emphasize, however, that if either the public types or the private types 

relevant for the second-stage choice are not observed at the time the 

network is formed, then the missing variable cannot enter into the first-

stage interim payoff functions, and so the linear structure of the second 

stage is maintained.  
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A formidable problem for the construction of the two-stage game is that 

there is simply no general theoretical model of network formation. 

Networks for business relations, job search and classroom friendships are 

formed according to very different rules, and vary greatly in the degree to 

which they are instrumental for the second-stage game. Particular 

network-formation games that appear from time to time in the literature are 

not compelling.  
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Perhaps the most interesting strategic approach to network formation is to 

imagine conditions that should be properties of equilibrium outcomes for 

many different games. This path, first travelled by Gale and Shapley 

(1962), leads to network stability concepts such as pairwise stability 

(Jackson and Wolinsky 1996) and pairwise-Nash stability (Calvó-

Amrengol and Ilkiliç 2009).  
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A network is pairwise-Nash stable if and only if a) no individual wants to 

drop any links, and b) there is no missing link that if added would, ceteris 

paribus, be a Pareto improvement for the individuals it connects. It is 

neither a strictly cooperative nor a strictly non-cooperative concept. 

Stability expresses the idea that breaking relations is a non-cooperative 

activity while forming new relations involves mutual consent. 
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While pairwise-stability is a promising approach to modeling network 

formation, it has one fundamental problem.  

 

Stable networks are not always guaranteed to exist. For some parameter 

values and realizations, the first-stage conditional expected values of 

playing the second stage in various network configurations might be such 

that the set of stable networks is empty.  Nonexistence can be overcome 

by introducing random stable networks. But these may assume away the 

selection problem. 
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Second, there is a converse problem of multiplicity of pairwise stable 

networks. 

 

Multiplicity means that there may not be sufficient empirical content in 

stability to address self-selection. 
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Third, this approach takes a dessicated view of the reason for network 

formation. 

 

It is very sensible to think that networks are formed for factors other than 

the second stage of a game. 
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What Can be Done? 

 

An alternative approach to modelling a two stage game is to study the 

second stage and account for the fact that in those cases where latent 

variables are believed to play a role in network formation,  ,x z  in the 

equilibrium strategy profile (will no longer be independent of x ; that is, the 

conditional expectation of regression residuals is no longer uncorrelated 

with the relevant variables. 

 

Calculation of the full equilibrium of the two-stage game is not necessary 

for identification.  
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The source of the failure of identification is   ,E x z x .   

 

This nothing more than a control function.  

 

To be clear, the robustness of identification to endogenous network 

formation exploits the quadratic game structure that leads to linear 

equilibrium strategies profiles. But this is true for general control function 

approaches; they break down when   ,E x z x  is linear in x.  
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Where would instrumental variables approaches come into play, from the 

vantage point of our two stage game? Suppose that the researcher has 

available a vector of observable individual attributes v . From the vantage 

point of this two stage game, the critical question involves the timing by 

which this information is revealed.  

 

If agents observe v  by the outset of the second stage, then endogenous 

network formation means that one needs to analyze  ,
i

E z x v   

 

But this means that v no longer constitutes an instrument, since it is 

correlated with the errors in the regressions that emerge in the second 

stage of the game. 
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In this sense, the pro forma use of instruments on the grounds that they 

are associated with the payoffs of network formation and not behaviors 

conditional on the network, is invalid.  

 

Once one introduces instruments to account for network endogeneity, one 

needs to account for their implications for the second stage regression 

errors, which will, outside of special cases, be present even if the payoff 

in the second stage is independent of the instrument. 
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Next Steps 

 

In terms of future research, there are several obvious directions.   

 

First, further mapping of assumptions/possibilities frontier is needed. 

 

Second, estimation issues need to be addressed. 

 

Third, control function approach needs to be elaborated. 

 

Fourth, information in group composition and prices should be explored 
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