Complex-Skill Biased Technical Change and Labor Market Polarization

by Colin Caines, Florian Hoffmann and Gueorgui Kambourov

Discussion by: Jaromir B. Nosal Boston College

Human Capital and Inequality, December 2015

Labor Market Polarization

- Polarization of US labor market
 - well documented: employment, wages
 - potential explanations: computerization, labor force composition (education, gender), international trade, SBTC
 - Katz and Murphy (1992), Autor, Levy, Murnane (2003), Autor and Dorn (2013), Acemoglu and Autor (2011), many more
- This paper: wages and (some) employment
 - $\circ\,$ introduce own taxonomy of occupations by complexity of tasks
 - $\circ~$ descriptive characterization of patterns by occupation type
- My plan
 - $\circ~$ main exercise: motivation and results
 - interpretation: mechanism

The Exercise

- Use German 'qualification and working conditions in Germany' data
 - $\circ~$ classify occupations into different complexity bins
 - $\circ~$ map US occupations into those bins
 - document relation of wage and complexity
 - compare to Autor and Dorn (2013) routine task-intesity index

- $\circ~$ O*NET data contains detail task content of occupations
- example: abilities: fluency of ideas.

The ability to come up with a number of ideas about a topic (the number of ideas is important, not their quality, correctness, or creativity).

truck drivers: 31 weight 30 importance aerospace engineers: 63 weight 57 importance

- $\circ~$ O*NET data contains detail task content of occupations
- example: skills: operation and control.
 Controlling operations of equipment or systems.
 truck drivers: 53 weight 43 importance
 - aerospace engineers: 6 weight 0 importance

- $\circ~$ O*NET data contains detail task content of occupations
- o example: abilities: manual dexterity.

The ability to quickly move your hand, your hand together with your arm, or your two hands to grasp, manipulate, or assemble objects.

truck drivers: 72 weight 50 importance aerospace engineers: 0 weight 0 importance

- $\circ~$ O*NET data contains detail task content of occupations
- o example: abilities: manual dexterity.

The ability to quickly move your hand, your hand together with your arm, or your two hands to grasp, manipulate, or assemble objects.

truck drivers: 72 weight 50 importance aerospace engineers: 0 weight 0 importance

- $\circ\,$ it is occupation level, but analysis on occupation level anyway
- are German occupations and workers similar enough to the US counterparts is the apprenticeship information worth it?

Questions _____

- 1. Why German data?
- 2. Why this comparison (A-D RTI index)?
 - $\circ\,$ why not go back to: Autor, Levy, Murnane (2003)
 - $\circ\,$ 4 classes: routine vs. non-routine, manual vs. information processing
 - example truck driver: non-routine manual jobs involving forming/testing hypotheses: non-routine information processing

Questions ____

- 1. Why German data?
- 2. Why this comparison (A-D RTI index)?
 - why not go back to: Autor, Levy, Murnane (2003)
 - $\circ\,$ 4 classes: routine vs. non-routine, manual vs. information processing
 - example truck driver: non-routine manual jobs involving forming/testing hypotheses: non-routine information processing
 - $\circ\,$ seems like a more relevant alternative
 - paper actually uses almost identical classification routine, manual non-routine, cognitive routine, cognitive non-routine, interactive

Questions ____

- 1. Why German data?
- 2. Why this comparison (AD routinization index)?
- 3. Are we selecting on worker characteristics?
 - growth in labor payment shares in college and female intensive jobs Acemoglu and Autor (2011), Burstein, Morales, Vogel (2015)
 - $\circ\,$ are we selecting occupations with growing importance of education, interpersonal interactions
 - $\circ\,$ selection on job composition changes must be a concern
- Bins in paper
 - o simple, complex, advanced/managerial, college
 - $\circ\,$ are we capturing college, age and gender?

Wage Regressions _____

• Occupation-specific change in mean wages on complexity bins FE, wages in 1980

 $\Delta W_{o} = \sum_{c=1,2,3,4} \beta_{c,o} \mathcal{I}_{c,o} + \gamma w_{o,1980} + \nu_{o}$

Wage Regressions _

 Occupation-specific change in mean wages on complexity bins FE, wages in 1980

 $\Delta W_{o} = \sum_{c=1,2,3,4} \beta_{c,o} \mathcal{I}_{c,o} + \gamma w_{o,1980} + \nu_{o}$

- Selection and composition: consider labor group L = (gender, education, age)
- Then: $\Delta w_{o,L} = \mathcal{I}_L + \sum_{c=1,2,3,4} \beta_{c,o} \mathcal{I}_{c,o} + \gamma w_{o,1980} + \varepsilon_o$

Wage Regressions

 Occupation-specific change in mean wages on complexity bins FE, wages in 1980

 $\Delta W_{o} = \sum_{c=1,2,3,4} \beta_{c,o} \mathcal{I}_{c,o} + \gamma w_{o,1980} + \nu_{o}$

- Selection and composition: consider labor group L = (gender, education, age)
- Then: $\Delta w_{o,L} = \mathcal{I}_L + \sum_{c=1,2,3,4} \beta_{c,o} \mathcal{I}_{c,o} + \gamma w_{o,1980} + \varepsilon_o$
- Suppose weights of L in occupation $\pi_{o,L}$

 $\begin{array}{l} \mbox{Aggregated LHS: } \sum_L \pi_{o,L} \Delta w_{o,L} = \Delta W_o \\ \mbox{Aggregated RHS: } \sum_L \pi_{o,L} \mathcal{I}_L + \sum_{c=1,2,3,4} \beta_{c,o} \mathcal{I}_{c,o} + \gamma w_{o,1980} + \varepsilon_o \end{array}$

Wage Regressions

 Occupation-specific change in mean wages on complexity bins FE, wages in 1980

 $\Delta W_{o} = \sum_{c=1,2,3,4} \beta_{c,o} \mathcal{I}_{c,o} + \gamma w_{o,1980} + \nu_{o}$

- Selection and composition: consider labor group L = (gender, education, age)
- Then: $\Delta w_{o,L} = \mathcal{I}_L + \sum_{c=1,2,3,4} \beta_{c,o} \mathcal{I}_{c,o} + \gamma w_{o,1980} + \varepsilon_o$
- · Ignoring labor group fixed effects on wage growth

 $\Delta W_{o} = \sum_{c=1,2,3,4} \beta_{c,o} \mathcal{I}_{c,o} + \gamma w_{o,1980} + \eta_{o}$

 $\eta_o = \varepsilon_o + \sum_L \pi_{o,L} \mathcal{I}_L$

Wage Regressions

 Occupation-specific change in mean wages on complexity bins FE, wages in 1980

 $\Delta W_{o} = \sum_{c=1,2,3,4} \beta_{c,o} \mathcal{I}_{c,o} + \gamma w_{o,1980} + \nu_{o}$

- Selection and composition: consider labor group L = (gender, education, age)
- Then: $\Delta w_{o,L} = \mathcal{I}_L + \sum_{c=1,2,3,4} \beta_{c,o} \mathcal{I}_{c,o} + \gamma w_{o,1980} + \varepsilon_o$
- Ignoring labor group fixed effects on wage growth $\Delta W_o = \sum_{c=1,2,3,4} \beta_{c,o} \mathcal{I}_{c,o} + \gamma w_{o,1980} + \eta_o$

 $\eta_o = \varepsilon_o + \sum_L \pi_{o,L} \mathcal{I}_L$

• Need $\mathcal{I}_{c,o}$ to be independent of $\sum_L \pi_{o,L} \mathcal{I}_L$

example: 'complex' occupations are female and education intensive

Wage Regressions ____

• Solution, run Mincerian regression first $\Delta w_{o,L} = \mathcal{I}_L + \mathcal{I}_o + \varepsilon_o$

use residuals or \mathcal{I}_o in second stage

- Acemoglu and Autor (2011): $\Delta w_{o,L} = \mathcal{I}_L + \sum_{c=1,2,3,4} \beta_{c,o} \mathcal{I}_{c,o} + \varepsilon_o$
- Does the result survive controlling for these characteristics?

Dependent Variable: Change in Log Hourly Wage			
Independent			
Variable	(i)	(ii)	(iii)
Education group 2	0.0742***	0.102***	0.0956***
	(3.01)	(4.08)	(3.83)
Education group 3	0.287***	0.303***	0.296***
	(8.58)	(9.19)	(9.06)
Island 2	0.0617***	0.0466**	0.0547***
	(3.31)	(2.51)	(2.94)
Island 3	0.0427	-0.0175	-0.0226
	(1.28)	(-0.49)	(-0.64)
Island 4	0.0397	-0.00267	-0.00469
	(1.11)	(-0.07)	(-0.13)

• What if we control for age and gender, too?

Interpretation _____

• Suppose we estimate

$$\Delta w_{o,L} = \mathcal{I}_L + \sum_c \beta_{c,o} x_{c,o} + \varepsilon_o$$

- Changes are functions of the equilibrium response of the economy
 - $\circ\,$ descriptive, need model to take stand of role of shocks
 - $\circ\,$ then can evaluate potential policies

Interpretation ____

• Suppose we estimate

$$\Delta w_{o,L} = \mathcal{I}_L + \sum_c \beta_{c,o} x_{c,o} + \varepsilon_o$$

- Changes are functions of the equilibrium response of the economy
 - o descriptive, need model to take stand of role of shocks
 - $\circ\,$ then can evaluate potential policies
- Microfoundation in Burstein, Morales, Vogel (2015)
 - decomopose role of shocks for employment: labor composition, equipment prod. occupational shifter, labor prod.
 - $\circ~\mbox{extension}$ to wages

Conclusion .

- Wage inequality from the perspective of occupation complexity
 - $\circ\,$ not clear how much due to occupation characteristics
 - o are we just renaming college and gender premium?
- What about employment
 - results much weaker
 - $\circ\,$ hard to put in framework of relative supply-demand of different labor groups
- Still some way to go before we can draw conclusions and address any policy responses