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Abstract

This paper uses 2000 Census data to estimate the relationship of agglomeration and proximity to human capital to wages. The paper takes
a geographic approach, and focuses on the attenuation of agglomeration and human capital effects. Differencing and instrumental variable methods
are employed to address endogeneity in the wage–agglomeration relationship and also to deal with measurement error in our agglomeration and
human capital variables. Three key results are obtained. First, the spatial concentration of employment within five miles is positively related to
wage. Second, the benefits of spatial concentration are driven by proximity to college educated workers, an instance of human capital spillovers.
Third, these effects attenuate sharply with distance.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Understanding the economy is not possible without under-
standing cities. One fact that illustrates the importance of cities
particularly clearly is the urban wage premium. Glaeser and
Mare (2001) show that there is a wage premium of 33% be-
tween the largest metropolitan areas (with population 500,000
or more) and non-urban locations. Not all agglomerations are
equal, however. Rauch (1993) and others have established the
existence of human capital externalities, where the proximity
to educated workers is associated with a higher wage. Both
of these effects are instances of agglomeration economies.
Other evidence of agglomeration economies has come from
estimates of production functions (Ciccone and Hall, 1996;
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Henderson, 2003) and growth (Glaeser et al., 1992 and Hen-
derson et al., 1995).1

The heart of the agglomeration literature is the idea that
spatial concentration—either of population or human capital—
enhances productivity. In all of the above papers and in most
of the rest of the literature, workers are treated as being ag-
glomerated if they share the same city or county. This approach
leaves some fundamental questions unanswered. What is the
spatial extent of externalities associated with the agglomera-
tion of population or human capital? How quickly do these
external economies attenuate with distance? These questions
are important for both business location decisions and for local
economic development policy. Businesses must choose loca-
tions, for instance in a downtown or an edge city, and this choice
will depend on the how the benefits of agglomeration attenuate.
Planners seek to create environments that are “competitive” in
the sense that they can attract firms. They are also interested
in the multiplier effects of local development policies such as
building stadiums or attracting key firms. In both cases, the

1 See Rosenthal and Strange (2004) for a survey of the agglomeration litera-
ture.
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rate at which agglomeration economies attenuate impacts the
cost-benefit calculus. Attenuation is also important for under-
standing urban sprawl, with its many social and environmental
consequences.

This paper estimates a series of wage equations to assess the
impact of agglomeration on wage rates. We devote special at-
tention to human capital externalities and the rate at which the
wage–agglomeration relationship attenuates with distance. Our
approach makes use of geographic information software and
2000 Census data to characterize the spatial distribution of eco-
nomic activity. Specifically, we create concentric ring variables
that measure the employment of both educated and less edu-
cated workers at various distances from a given worker’s place
of employment (i.e., within 5 miles, between 5 and 25 miles,
etc.). We then estimate the relationship between these concen-
tric ring measures of agglomeration and local human capital
and the log of individual worker wages.

In taking this geographic approach, we will focus on sev-
eral key aspects of the agglomeration–wage relationship. The
first is the urban wage premium, where workers are paid more
in large cities, controlling for their characteristics.2 The sec-
ond is human capital externalities, where the proximity to more
educated workers raises a worker’s wage. Human capital ex-
ternalities have been reported in wage studies by Rauch (1993)
and, more recently, by Moretti (2004a), who instruments for the
presence of college educated workers with the lagged presence
of universities. Our third area of focus is whether agglomeration
is of greater benefit to more educated workers. Considering a
range of occupations, Wheeler (2001) finds that more educated
workers enjoy a larger premium, while Adamson et al. (2004)
find the opposite.3

None of these papers consider attenuation. The list of pa-
pers that do consider attenuation is short. Rosenthal and Strange
(2003, 2005) consider births. The key result is that the effects
of the local environment on births and on new firm employment
both attenuate by roughly half after five miles. Anderson et al.
(2004, 2005) consider the local impacts of a shift in the orga-
nization of higher education in Sweden. The policy change—
a significant decentralization—is a kind of natural experiment.
They find that the effects on productivity and patenting are
highly localized. Arzaghi and Henderson (2006) show that ex-
ternal economies in advertising are also highly localized.

We face two econometric challenges when regressing wage
on agglomeration, measurement error and endogenous regres-
sors. The measurement error arises from the construction of our
agglomeration variables. They are based on data at the level
of the individual worker’s Work Public Use Micro Area (PW-
PUMA). In characterizing the local economic environment of

2 In addition to the previously mentioned paper by Glaeser and Mare (2001),
several papers find evidence of an urban wage premium. See, for instance,
Combes et al. (2003, 2008), Tabuchi and Yoshida (2000), Di Addario and Patac-
chini (in press), and Wheeler (2006). See also Diamond and Simon (1990) and
Wheaton and Lewis (2002), who find that wages are higher in more specialized
locations.

3 Lee (2005), considering health care workers, also finds that workers with
less skill benefit more from agglomeration.
an individual worker, we treat the worker as being situated at
the geographic centroid of the PWPUMA, with employment
for each individual PWPUMA uniformly distributed through-
out the given PWPUMA. We then draw concentric rings around
the geographic centroid of each PWPUMA and measure the
amount of employment within each distance band extending
out from the PWPUMA centroid. While it is not obvious that
a better procedure is feasible given our data, this nonetheless
gives rise to an errors-in-variables problem: our agglomeration
variables are measured with error, biasing our estimates of the
influence of agglomeration towards zero. To deal with this, we
restrict the estimating sample to individuals who live in MSAs
and who work in PWPUMAs where the first concentric ring
(five-mile) at least touches on two PWPUMAs. Restricting the
sample to these small PWPUMAs reduces measurement error
that would otherwise arise from larger PWPUMAs in sparsely
populated areas.4

Our agglomeration measures may also be endogenous to an
individual’s wage. Concerns about endogenous measures of ag-
glomeration dominate much of the empirical literature in this
area (i.e., Combes et al., 2008). The issue of greatest concern
has been that unusually skilled individuals are drawn to ag-
glomerated areas. Selection of this sort would cause the error in
a worker’s wage equation to be correlated with the agglomera-
tion variables, biasing the estimated effect of agglomeration on
wage rates.5 Balanced against the downward bias arising from
measurement error, the net effect of the two biases is ambigu-
ous.

To address endogeneity, we begin by including a rich set of
observable worker-specific attributes in the regressions.6 In ad-
dition, we difference our estimates in several ways. This has
the effect of further stripping away the influence of unobserved
worker-specific skill. As our first layer of differencing, all of
our models include thousands of MSA/occupation fixed ef-
fects.7 This ensures that the only endogenous sorting that might
bias our estimates is within MSAs and occupations, a much
narrower selection problem than is typical in agglomeration re-
search. A second level of differencing occurs when we compare
estimates of the effects of agglomeration in various concentric
rings. Differencing in this fashion removes any unobserved ef-
fects that are common across rings. A third level of differencing
is obtained when we estimate the influence of human capital
spillovers: we difference the effect of proximity to college-
educated workers relative to workers without college degrees.
This removes unobserved effects associated with the total num-
ber of workers in a given ring. When estimating the attenuation
of human capital externalities—by comparing human capital

4 In earlier versions of the paper, we report results of models restricting the
sample to just the New York MSA. The PWPUMAs in New York are smaller
in geographic size relative to most parts of the US Results were similar.

5 It is worth pointing out that Bacolod et al. (2007) document a pattern where
skills increase only modestly with city size (as measured by Dictionary of Oc-
cupational Titles job characteristics).

6 Our control variables include the worker’s age, age squared, education, race,
marital status, presence of children, and years in the United States.

7 With 331 MSAs and many different occupations, over 24,000 fixed effects
are included in some models.
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effects across adjacent rings—all three levels of differencing
are at work. In this last case, the only remaining unobserved
skills of the worker that might influence our results are those
that are uncorrelated with the worker’s observable attributes,
differ from MSA/occupation norms, and are unrelated to the
overall level of agglomeration.

While the differencing strategy described above removes
much of the bias associated with endogenous sorting based on
unobserved worker skill, this approach nevertheless has two
limitations. First, even for the triple-differenced results, we can-
not rule out the possibility that some degree of endogeneity
bias remains. Second, in some instances, it is desirable to focus
on the coefficient levels rather than differences. For both rea-
sons, our final procedure is to instrument for the agglomeration
rings and estimate our wage equations by generalized method
of moments (GMM). In principle, this can further alleviate bi-
ases arising both from endogenous regressors and measurement
error. Our approach is motivated by the Manhattan Skyline. It
is well known among architects that the observed pattern of big
buildings downtown and midtown, with smaller buildings in be-
tween, reflects at least in part underlying geology. The tallest
buildings are located where bedrock is relatively accessible. In
this spirit, we employ as instruments several geological vari-
ables that vary at a micro level of geography.8 This includes
landslide hazard, seismic hazard, and the presence of sedimen-
tary rock. Further details on these geological variables are pro-
vided in Section 3.

The paper’s key results are as follows. First, the spatial con-
centration of employment is positively related to wage. Re-
stricting our attention to activity within five miles of an individ-
ual’s workplace, our GMM estimate of the elasticity of wage
with respect to nearby employment is roughly 4.5%. Second,
this urban density premium is driven by proximity to college
educated workers, an instance of human capital externalities.
These human capital effects are felt more strongly by college-
educated workers than by those without college degrees. Third,
and most importantly, these effects attenuate sharply with dis-
tance.

To get a sense of magnitude, relocating an individual from
a work site with 25,000 workers within five miles to one with
125,000 workers—an amount roughly equal to a move from
the 25th to the 75th percentile—would increase a given in-
dividual’s wage by 2 percent. If instead this change in local
workforce took place 5 to 25 miles outside of the individu-
al’s place of work, the impact on the individual’s wage would
be roughly four times smaller. Transforming 100,000 less-
than-college workers within 5 miles into college-educated—
equivalent to the 25/90 difference in percentile—would in-
crease the wage of a typical worker by 12 percent in the OLS
model. That amount is roughly equal to one third of the in-
cremental gain from acquiring a college degree beyond that of
a high school degree. In the GMM models, the correspond-

8 In the human capital and wage literatures, Hoxby (2000), Black et al.
(2002), and Combes et al. (2008) are the only other papers of which we are
aware that use geologic features as instruments to control for endogenous re-
gressors.
ing wage effects are even larger, equaling 15 and 30 percent
depending on specification of the instruments. These effects
have a still larger impact on individuals who themselves have a
college degree. If the transformation of local low-skilled work-
ers into college-educated took place 5 to 25 miles outside of
the individual’s workplace, the estimated effects would be half
the size just noted. In some specifications, the effect would
be insignificant. These findings indicate that human capital
spillovers are economically important, especially for the col-
lege educated. These findings also confirm a continuing and
vital role for traditional downtowns; proximity still matters.

The rest of the paper is organized as follows. Section 2 sets
out the theory of the agglomeration–wage relationship and the
econometric issues that bear on estimation. Section 3 reviews
the data. Section 4 presents our results, highlighting the influ-
ence of urbanization and local human capital on wages. Sec-
tion 5 concludes.

2. Agglomeration, productivity, and wages

The theoretical basis for a relationship between agglomer-
ation and wages is well known (i.e., Roback, 1982). On the
labor supply side, real wages must adjust so that mobile work-
ers are indifferent between locations. On the labor demand side,
nominal wages must equal the value of workers’ marginal prod-
ucts. It is this equality that allows one to use nominal wages
to look for evidence of agglomeration economies (see Moretti,
2004b). However, although competitive labor markets ensure
that a worker will be paid the value of his or her marginal prod-
uct, it is not necessarily the case that the influence of agglom-
eration on wages exactly reflects the benefits of agglomeration.
Agglomeration may also impact rents.

To illustrate this, we adapt the open city model from Gy-
ourko and Tracy (1991). Fig. 1 contains two curves. The first
is combinations of rent and wage that give firms zero profit. It
is labeled π(Aa) = 0. If wage increases, land rents must fall if
profits are to remain at zero, holding constant the attributes Aa

of the local economic environment. The other curve ensures that
workers enjoy equal utility in all locations. This locus, labeled
U(Aa) = U∗, sets utility equal to a system-wide level, U∗. It
is upward sloping. If wage increases, land rent must also be
higher if individuals are to maintain equal utility, holding con-
stant the set of local attributes. Of course, firms are concerned
with land rents in the commercial sector, while workers are con-
cerned with residential land rents. However, these will be posi-
tively related in a spatial equilibrium, so we will for simplicity
consider only one land rent variable. Under these conditions,
the equilibrium wage and land rent at location a are given by
w∗

a and r∗
a where the zero-profit and equal-utility curves inter-

sect.
Suppose that agglomeration enhances worker productivity,

but does not have a direct effect on worker utility. In this
case, an increase in agglomeration, denoted by Ab > Aa , will
cause the firm’s profit curve to shift out in order to maintain
π(Ab) = 0. If the iso-utility function were perfectly flat, then
wages would rise by the full amount of the horizontal shift in
the zero-profit locus, w∗∗ − w∗ in the figure. However, with
b a
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Fig. 1. Local attributes, wages, and land rents.

an upward sloping iso-utility function, some of the productiv-
ity gains from agglomeration will be capitalized into higher
land rents, reducing the change in wage that would otherwise
occur. In this case, the impact of agglomeration on wages is
a lower bound on the productivity gains from agglomeration
even though the impact of agglomeration on wages is an ex-
act measure of the influence of agglomeration on the marginal
productivity of labor.

Bearing these points in mind, an appealing estimating equa-
tion would be:

lnwi,z = Siθ + Azγ + εi, (1)

wi,z is the wage of worker i in location z. Si is the worker’s
level of human capital. Az is a vector of location-specific char-
acteristics that affect productivity, including, for example, the
total number of workers at the location or the number of work-
ers with a college education. εi is a white noise error term that
captures idiosyncratic differences in wage.

An immediate challenge, common to all wage studies, is that
some elements of Si are unobserved. Accordingly, we proxy
for S using observable attributes of the individual worker. This
leads to the following specification:

lnwi,z = Hiδocc,msa + Xiβ + Azγ + μi,s + εi,z, (2)

where μi,s = Siθ − Hiδocc,msa − Xiβ . In (2), δocc,msa is a vec-
tor of occupation/MSA fixed effects that capture the average
level of productivity among workers belonging to a given oc-
cupation in a given metropolitan area and Hi is the associated
vector of indicator variables.9 Xi is a vector of worker i’s ob-
servable characteristics, including age, age squared, education,
marital status, presence of children, and years in the US. These
variables control for deviations between the worker’s level of
human capital and the average skill level for his/her occupation
group and MSA. The term μi,s represents that portion of the
individual’s skill that is not captured by the occupation/MSA
fixed effects and Xi .

9 In contrast, the subscript z on the agglomeration variables (Az) denotes the
individual’s workplace which is measured at the Work PUMA level, a level
below that of the MSA.
Two key assumptions are necessary if ordinary least squares
(OLS) estimates of (2) are to yield unbiased and consistent esti-
mates of γ . These are: (i) that A is measured without error and
(ii) that sorting by worker skill does not cause A to be corre-
lated with μi,s .10 Unfortunately, it is likely that neither of these
assumptions holds exactly. Our response is described below.

2.1. Measurement error

As discussed in the Introduction, our agglomeration vari-
ables are likely measured with error. Thus, we observe Az,m =
Az,True + μz,m where Az,m and Az,True are the measured and
true levels of agglomeration, while μz,m is the measurement er-
ror which is assumed to be random with mean zero and finite
variance. As is well established (see Greene, 1993, for exam-
ple), even as sample size gets large, inserting Az,m for Az,True in
the regression function causes estimates of the influence of A to
be biased towards zero. Because the true agglomeration effect
is expected to be positive, this implies a downward bias. Our
first response to this problem, as noted in the Introduction, is to
carry out our estimation for a sample with small PWPUMAs,
specifically with five-mile rings that touch at least two PW-
PUMAs. This directly reduces measurement error. Our second
response is to instrument for Az,m with variables that are cor-
related with Az,True but uncorrelated with both μz,m and the
residual in Eq. (2). We therefore employ our geologic variables
as instruments in a generalized methods of moments (GMM)
model.

2.2. Endogenous agglomeration: Sorting by skill

Suppose now that agglomeration is measured without error.
We are still concerned with the possibility that skilled workers
within an occupation and MSA select into agglomerated areas
(recall the occupation/MSA fixed effects). In this case, μi,s will
be correlated with Az and estimates of Eq. (2) will suffer from
a standard omitted variable bias problem. This does not, how-
ever, necessarily affect our ability to identify the rate at which
agglomeration economies attenuate.

To clarify, we rewrite (2) decomposing Az into two rings

lnwi,z = Hiδocc,msa + Xiβ + Az,1γ1 + Az,2γ2 + μi,s + εi,z,

(3)

where Az,1 and Az,2 are the inner and outer rings, respectively.
Suppose further that μi,s is linearly related to Az,1 and Az,2
such that

μi,s = a1Az,1 + a2Az,2 + si, (4)

10 The challenge of controlling for unobserved individual worker human capi-
tal is present in virtually all wage studies and is certainly not unique to our work.
In the agglomeration literature, Glaeser and Mare (2001) address the issue in
several ways, including using as instruments the characteristics of a worker’s
parents’ place of residence. They conclude that roughly half of the raw urban
wage premium can be attributed to selection of skilled workers into large cities
and that the rest is associated with agglomeration.



S.S. Rosenthal, W.C. Strange / Journal of Urban Economics 64 (2008) 373–389 377
where si is that portion of the worker’s unobserved skill that is
uncorrelated with Az,1 and Az,2. Substituting (4) into (3) gives

lnwi,z = Hiδocc,msa + Xiβ + Az,1(γ1 + a1)

+ Az,2(γ2 + a2) + sis + εi,z. (5)

Consider now our estimate of the rate at which agglomeration
economies attenuate. This is given by the difference in the esti-
mated coefficients on Az,1 and Az,2,

d1,2 = (γ1 − γ2) + (a1 − a2). (6)

From (6) it is clear that if a1 = a2 then the bias associated with
wage level effects differences away, and OLS estimates of (6)
yield unbiased measures of γ1 −γ2, the rate of attenuation. This
suggests that our estimate of γ1 − γ2 is less sensitive to unob-
served worker skill than are our estimates of the levels of γ1
and γ2. The argument is even stronger when we further dif-
ference estimates of γ1 − γ2 based on differences in proximity
to college-educated versus less-than-college educated workers
(human capital spillovers).

Suppose, however, that a1 > a2; this would mean that adding
one more worker to the nearby ring presents more of an at-
traction to an individual with unobserved talent than adding
one more worker to the environment further away. Under these
conditions, OLS estimates of γ1 − γ2 would still suffer from
some degree of upward bias. To mitigate this concern, in the
Introduction we outlined our plan to use within-MSA variation
in geologic features as instruments to further control for mea-
surement error and endogeneity. If the geologic measures are
exogenous and sufficiently correlated with agglomeration, then
GMM yields consistent estimates. In that regard, the GMM esti-
mates based on the geologic instruments almost certainly work
to reduce any bias associated with both measurement error and
endogeneity.

3. Data and variables

The primary data for the paper are drawn from the year 2000,
5% Integrated Public Use Microdata Series (IPUMS).11 Hourly
wage rates are calculated by dividing annual wage earnings by
the usual number of hours worked per week and the number of
weeks worked in the last year. In our wage regressions, we con-
trol for a standard set of demographic attributes. These include
the worker’s level of education, the presence of children, mari-
tal status, age, race, and years of residency in the United States.
Each of the models further controls for MSA/occupation fixed
effects in order to capture unobserved MSA-wide effects that
are specific to individual occupations and might affect a work-
er’s wage rate. With occupations measured at the 3-digit level,
this yields up to 24,000 fixed effects in some models.12

A primary focus of the paper is the spatial reach of agglom-
eration economies. In order to achieve this focus, we need to
characterize the spatial distribution of employment as viewed

11 See http://www.ipums.org.
12 When specifying the fixed effects, we treat self-employment as a separate
occupation.
from each individual worker’s place of work. To do this, we
created a set of concentric ring employment variables, each of
which measures the number of workers present at a given dis-
tance from the workplace: 0 to 5 miles, 5 to 25 miles, 25 to
50 miles, and 50 to 100 miles. In forming these variables, per-
son weights from the IPUMS were used to ensure that our em-
ployment counts correct for the non-random nature of the year
2000 Census. In addition, each of the employment rings reports
the number of full-time male and female workers aged 30 to 65.
For these purposes and elsewhere in the paper, full time workers
are defined as individuals who report that their usual number of
hours worked per week in the last year was 35 hours or more.

In selecting this structure of employment rings, our inten-
tion is to be flexible with regard to the geographic range of
agglomeration effects. Most of the prior work on agglomeration
effects has assumed the effects to operate MSA level, some-
times aggregated to the Consolidated Metropolitan Statistical
Area (CMSA). These specifications roughly correspond to ag-
glomeration effects that extend out to the 5 to 25-mile ring. By
including also a 5-mile ring, we will be able to test whether ag-
glomeration effects operate differently at a level of geography
below that of large MSAs. By including 25 to 50-mile and 50 to
100-mile rings in some of the specifications to follow, we will
be able to test whether effects operate at even larger levels of
geography, as in, for instance, the state level work on agglom-
eration by Ciccone and Hall (1996).

Several steps were necessary to form the employment rings.
First, we identified the individual’s place of work using the
place-of-work PUMA (PWPUMA), the most detailed indica-
tor available in the data. In total, there are 1239 PWPUMAs in
the United States. Second, we created an electronic map of the
PWPUMA boundaries. To do this, geographic information soft-
ware (MapInfo and MapBasic) was used to aggregate up from
residential PUMA boundary files available at the census web-
site.13

Our next step was to measure the level of employment
present in each PWPUMA, using the person sampling weights
in the IPUMs to ensure representative counts. Mapping soft-
ware was then used to draw circles of radius 5, 25, 50, and
100 miles around the geographic centroid of each PWPUMA.
Treating all employment within a given PWPUMA as uni-
formly distributed throughout the area, the level of employment
contained in a given circle was calculated by constructing a pro-
portional (weighted) sum of employment for those portions of
the PWPUMAs intersected by a given circle.14 We then differ-
enced the employment levels for adjacent circles to obtain the
level of employment within a given concentric ring. For exam-

13 PUMAs are smaller than PWPUMAs, and are used by census to iden-
tify residential locations. A correspondence file that matches PUMAs to PW-
PUMAs is available at the IPUMs website. In most cases, PWPUMAs corre-
spond to regions identified by the first three digits of the 5-digit residential
PUMA code. However, in some instances, PWPUMAs correspond to a more
idiosyncratic group of residential PUMAs.
14 For example, if a circle includes all of PWPUMA 1 and 10 percent of the
area of PWPUMA 2, then employment in the circle is set equal to the employ-
ment in PWPUMA 1 plus 10 percent of the employment in PWPUMA 2.
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(a)

Fig. 2. PWPUMA boundaries for the Continental United States.
ple, the 25-mile ring reflects employment between the 5 and
25-mile circles.

Fig. 2(a) displays the PWPUMA map for the entire United
States, while Fig. 2(b) displays the PWPUMA boundaries for
six large cities. The PWPUMAs partition the entire country. In
some situations, they are quite irregular in shape. As is appar-
ent, large metropolitan areas have numerous PWPUMAs, but
in rural areas a single PWPUMA can cover a large geographic
area. This raises concerns both about measurement error and
our ability to identify the independent influence of the individ-
ual rings in regressions on workers in large PWPUMAs. For
that reason, we restrict our sample to workers whose place of
residence is within a metropolitan statistical area (MSA) and
whose place of work (PWPUMA) is sufficiently small that a
five mile ring drawn around its geographic centroid extends be-
yond the border of the own-PWPUMA (or equivalently, touches
at least two PWPUMAs).15

As discussed earlier, we also estimate all of our models both
by OLS and GMM. As instruments, we draw on geologic data
from the United States Geological Survey (USGS). Specifi-
cally, for those portions of each concentric ring that lie within
some defined PWPUMA (e.g., not over the ocean or the Great
Lakes), we use data from the US Geological Survey to compute

15 Restricting the sample as above also ensures that information used to mea-
sure any given concentric ring is drawn from at least two different PWPUMAs.
This reduces collinearity in the regressors and helps to identify the underlying
effects.
three measures: the fraction of the ring underlain by sedimen-
tary rock, the fraction of the ring designated as seismic hazard,
and the fraction designated as landslide hazard. These data were
obtained over the web as boundary files for the entire United
States (including Alaska and Hawaii). Portions of these maps
are shown in Fig. 3.

The top picture in Fig. 3 displays the bedrock that under-
lies New York. As is clear, many different types of bedrock
are identified in the USGS boundary file. We coded all regions
in the bedrock map to equal one if they were associated with
sedimentary rock, and zero otherwise. We did this because con-
struction can be more costly on sedimentary rock. Overlaying
the bedrock map on top of the PWPUMA map from Fig. 2,
we then calculated the proportional average area of each PW-
PUMA underlain by sedimentary rock. Similarly, seismic haz-
ard varies on a scale from zero to 100 in the USGS file, as shown
for San Francisco in the middle picture of Fig. 3. We calculated
the average seismic hazard for each PWPUMA by also over-
laying the seismic map on top of the PWPUMA map, allowing
for the relative contribution from each seismic region to a given
PWPUMA. Landslide hazard is coded into several different cat-
egories by the USGS, low, medium, and high, as shown for Los
Angeles in bottom picture of Fig. 3. We attached numerical val-
ues to each of these categories, 1, 2, and 3, respectively, and
then calculated the proportional average landslide hazard for
each PWPUMA following the same procedure as for the other
geological variables. Summary measures of the geologic vari-
ables are provided in Appendix A.
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(b)

Fig. 2. PWPUMA boundaries for selected metropolitan areas.
4. Results

This section presents estimates of the influence of agglomer-
ation on wage. For all models, coefficients on the demographic
attributes (e.g. age, education, etc.) were consistent with esti-
mates in the labor literature and are not reported except (see
Table A2 in the Appendix for an example).16 The samples used

16 These variables include dummy variables for the worker’s education, less
than a High School degree, High School degree, College degree, Masters de-
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Fig. 3. Geologic features in select cities.



S.S. Rosenthal, W.C. Strange / Journal of Urban Economics 64 (2008) 373–389 381
Table 1
Sample percentiles for concentric ring employment variables

Number of workers Sample percentile

10th 25th 50th 75th 90th

Within 0–5 miles 5798 23,775 57,665 115,296 323,247
Within 5–25 miles 87,306 196,790 481,330 998,782 2,314,140
Within 25–50 miles 109,766 244,331 630,561 1,208,729 1,514,734
Within 50–100 miles 333,768 658,219 1,137,258 2,289,170 2,726,202
Less-than-college, 0–5 miles 3982 15,272 36,722 71,464 162,717
Less-than-college, 5–25 miles 64,840 137,374 316,513 600,081 1,463,621
Less-than-college, 25–50 miles 79,417 178,695 419,542 728,686 912,667
Less-than-college, 50–100 miles 245,844 507,280 818,407 1,541,408 1,813,270
College-or-more, 0–5 miles 1815 7483 19,545 42,203 138,823
College-or-more, 5–25 miles 23,795 60,277 159,468 387,907 850,519
College-or-more, 25–50 miles 26,288 60,830 210,632 464,792 576,886
College-or-more, 50–100 miles 86,340 173,675 335,174 840,719 941,523

The sample is restricted to individuals who reside in MSAs and who work in “small” PWPUMAs. “Small” in this context means that a 5-mile ring drawn around
the geographic centroid of the PWPUMA extends beyond the boundary of the own-PWPUMA.
to estimate the models were restricted to male workers between
the ages of 30 and 65 who report usual hours worked per week
in the previous year as equal to or greater than 35 hours. This re-
duces concerns about the possible endogenous decision to work
full time. It is worth re-iterating that all of the agglomeration
variables are based on counts of workers that include both males
and females.

4.1. Summary statistics

It is useful to begin with a brief review of how much employ-
ment is typically found within different distances, as this will
help to put the magnitude of the estimated effects in perspec-
tive. Accordingly, Table 1 presents sample percentiles (the 10th,
25th, 50th, 75th, and 90th) of the concentric ring employment
variables used in the regressions.17 A 100,000 person increase
in the total number of workers within 5 miles is roughly equiva-
lent to the 25/75 spread. For college-or-more workers, increases
of 50,000 and 100,000 are roughly equivalent to the 25/75 and
25/90 spreads, respectively.

4.2. Instrumental variable diagnostics

Our primary results are presented in Tables 2 through 4. Be-
fore discussing the tables in detail, we digress briefly here to
clarify the nature of the instrument diagnostic tests reported at
the bottom of each table, and their sensitivity to model spec-
ification. This is important because assessment of instrument

gree, and more than a Masters. Also included are controls for whether a child is
present in the household, whether the worker is married, age and age squared of
the worker, race of the worker (white, African American, Hispanic, Asian, and
other), and the number of years the worker has been in the United States (less
than 6 years, 6 to 10 years, 11 to 15 years, 16 to 20 years, 20 years or native
citizen).
17 As might be expected, there is more variation in the inter-quartile range in
the more distant rings. The inter-quartile range (the difference between the 75th
and 25th percentiles) for the total number of workers in the local economy is
91,521 for the 0 to 5-mile ring, but rises to 1,630,951 for the 50 to 100-mile
ring.
validity has gained increasing attention, but at the same time is
still an evolving science.

It has been shown that weak instruments bias estimates from
instrumental variable models (e.g. Murray, 2006 and Stock
and Yogo, 2005). Correlation between the instruments and the
model error terms, of course, also biases the estimates. The tests
reported at the bottom of Tables 2 through 4 are designed to
help identify the presence of these conditions. In checking the
robustness of our results, it is important to note that we found
these test statistics to be sensitive to the manner in which the
model standard errors are clustered.

Clustering the standard errors at the MSA level greatly low-
ers the Kleibergen–Paap and first-stage F statistics, increasing
the tendency to view the instruments as weak. At the same
time, clustering at the MSA level greatly lowers the Hansen-J
test statistic, increasing the tendency to view the model as
correctly specified (including that the instruments are exoge-
nous).18 Clustering at the MSA level also greatly increases the
coefficient standard errors and reduces their associated t-ratios
(the coefficients, of course, are not affected). Unfortunately,
theory offers little guidance as to the “correct” level and type
of clustering. We have experimented with clustering at the indi-
vidual’s PWPUMA, clustering by the individual’s occupation,
and not clustering at all. In Tables 2 through 4 we report only the
MSA-clustered results, both for the coefficient t-ratios and also
for the instrument diagnostic tests. Clustering at the MSA level
is a conservative approach in the sense that it has the greatest
downward impact on the model test statistics (e.g. Hansen-J ,
Kleibergen–Paap, t-ratios) of the different clustering strategies
we explored. In this sense, the test statistics and coefficient
t-ratios reported in Tables 2 through 4 may well be smaller
than is warranted, but we cannot offer concrete evidence on this
point.

Additional robustness checks also revealed that the instru-
ment diagnostic tests are sensitive to differences in the number
and type of geologic concentric rings included in the first stage
regressions. For that reason, in models where the geography of

18 In part, this reflects that the Hansen-J statistic has weak power.
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Table 2
Urbanization elasticity (dependent variable: log of individual wage; t -ratios based on standard errors clustered by MSA)

Full sample Less than college degree College degree or more

OLS GMMa GMMb OLS GMMa GMMb OLS GMMa GMMb

Log number of full-time workers 0.0305 0.0463 0.0469 0.0255 0.0323 0.0473 0.0364 0.0580 0.0516
Age 30–65 within 5 miles (9.38) (1.68) (6.27) (8.89) (1.33) (7.15) (8.93) (1.66) (6.23)

Hansen-J over ID test statisticc – 1.740 11.22 – 2.126 10.56 – 0.603 12.18
– (0.4189) (0.4249) – (0.3454) (0.4811) – (0.7396) (0.3504)

Kleibergen–Paap rk weak inst. F -stat.c – 1.907 18.380 – 1.94 12.770 – 1.895 21.789
– – – – – – – – –

Kleibergen–Paap rk underl. F -stat.c – 6.522 32.679 – 5.496 30.715 – 8.281 33.424
– (0.0888) (0.0011) – (0.1389) (0.0022) – (0.406) (0.0008)

1st stage F -stat. on inst. for # of workersc – 1.91 18.38 – 1.94 12.77 – 1.890 21.79
– (0.1285) (0.0000) – (0.1228) (0.0000) – (0.1310) (0.0000)

Observations 730,281 724,509 724,509 461,264 455,708 269,017 455,708 264,091 264,091
MSA/occupation FE 24,453 18,681 18,681 20,764 15,208 14,995 15,208 10,069 10,069
MSA clusters 297 290 290 296 286 295 286 254 254
R-square within 0.0974 0.0968 0.0968 0.0782 0.0780 0.0600 0.0769 0.0591 0.0595
R-square between 0.3051 – – 0.1834 – 0.12103 – – –
R-square overall 0.2209 – – 0.1390 – 0.0830 – – –

Each model includes additional controls for the worker’s education (less than a High School degree, High School degree, College degree, Masters degree, and more
than a Masters); whether a child is present in the household; whether the worker is married, age and age squared of the worker, race of the worker (white, African
American, Hispanic, Asian, and other), and the number of years the worker has been in the United States (less than 6 years, 6 to 10 years, 11 to 15 years, 16 to
20 years, 20 years or native citizen).

a GMM instruments include circle measures 0 to 5 miles of seismic hazard, landslide hazard, and percent of area underlain by sedimentary rock.
b GMM instruments include concentric ring measures (0 to 5 miles, 5 to 25 miles, 25 to 50 miles, and 50 to 100 miles) of seismic hazard, landslide hazard, and

percent of area underlain by sedimentary rock.
c Test statistic is cluster-robust.
the agglomeration variables is restricted to the first two inner-
most rings (0 to 5 miles and 5 to 25 miles) as in Tables 2 and 4,
two sets of GMM estimates are presented. The first set is based
on first-stage concentric rings for the geologic instruments that
match exactly the geography of the agglomeration variables
used in the wage regression. The second set is based on a more
expansive set of first-stage geologic measures that include rings
for 0 to 5 miles, 5 to 25, 25 to 50, and 50 to 100 miles. In models
in which all four agglomeration rings are included in the wage
regression as in Table 3, only the GMM estimates based on the
expanded set of geologic rings are reported. As will become
apparent, the qualitative and often quantitative patterns of our
model coefficient estimates are largely robust to the alternative
instrument lists used in the first stage.

4.3. Urbanization

We begin by presenting estimates of the impact of agglom-
eration on wage. Instead of considering the effect of an increase
in total employment in an MSA or the MSA’s level of hu-
man capital, our approach is geographic. We focus initially on
the effect of employment within 5 miles. Instead of estimating
the log-linear models described above, we will first estimate
log-log models, with coefficients interpreted as elasticities. We
carry out this estimation because we consider the elasticity es-
timates to be of inherent interest and because they help to relate
our estimates to prior work. This specification also allows us
to highlight the econometric issues in a simpler setting before
moving on to a set of models that demand more from the data.
Consider now the first three columns of Table 2. In the OLS
model (the first column) doubling total employment within
5 miles is associated with an increase in wage of 3.1 percent.
This estimate is highly significant. In the two GMM models
(columns two and three) the corresponding estimates are 4.6
and 4.7 percent based on the restricted and expanded instru-
ment lists, respectively. The first of these GMM estimates is
only marginally significant (the t-ratio is 1.68), while the lat-
ter is precisely estimated (the t-ratio is 6.27). These estimates
are broadly in line with prior work. Combes et al. (2008) re-
port urbanization elasticities in France that range from 2.5 to
4.7 percent depending on the number of controls included in
the model. Ciccone (2002) estimates an elasticity of 4.5 percent
drawing on data from several countries in Europe (specifically,
Germany, Italy, France, Spain, and the UK). Ciccone and Hall
(1996) estimate an elasticity of 5 percent based on state-level
data in the United States.

Also reported in Table 2 are the instrument diagnostic tests
noted earlier. In each of the six GMM models, the Hansen-J
statistics are low and we fail to reject the overidentifying re-
strictions. This is consistent with the idea that the geologic
instruments are exogenous. Observe also that the Kleibergen–
Paap test statistics are considerably higher when the expanded
instrument list is used in the second of the GMM models, as
is the first-stage F -statistic. Stock and Yogo (2005) developed
critical values for weak instrument tests when the model errors
are i.i.d. No such critical values are available in the literature for
the case when the model error structure allows for robust forms
of heteroskedasticity and clustering. Nevertheless, relative to
the Stock–Yogo benchmarks, the GMM models based on the
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restricted instrument set fail the weak instrument test while the
reverse is true for the GMM models based on the expanded in-
strument list.19 We also should emphasize that when we employ
robust standard errors without clustering, all of the GMM mod-
els resoundingly pass the weak instrument tests. Given these
different results and the caveats about instrument diagnostic
tests noted earlier, we cannot say with certainty that the geo-
logic instruments are both exogenous and sufficiently strong.
On the other hand, it is encouraging that the GMM full-sample
estimates reported in Table 2 are nearly identical for the two
different sets of instruments as this should be the case if the
instruments are valid.

The results in the first three columns of Table 2 restrict the
wage effect associated with agglomeration to be the same for
both educated and less-educated workers. There is reason to
believe that this might not the case. Workers with limited educa-
tion might have greater potential to benefit from the knowledge
spillovers associated with agglomeration. On the other hand,
highly educated workers might have more ability to commu-
nicate and, as a result, a greater ability to learn from nearby
human capital.20 Of course, learning is only one of the mech-
anisms by which agglomeration can impact productivity and
wages.21 As far back as Marshall (1890), it was recognized
that agglomeration also encourages labor market pooling and
input sharing. In both cases a better match between complemen-
tary labor and capital adds to worker productivity, and so in-
creases wage. But as with knowledge spillovers, whether these
economies have a greater effect on the productivity and wages
of skilled versus low-skilled workers is ambiguous. A priori,
therefore, it is not clear whether highly educated workers would
benefit more or less from agglomeration.

Because of this ambiguity, the last six columns of Table 2
present the results of separate estimation for workers with-
out college degrees (columns 4–6) and with college degrees
(columns 7–9). Regardless of estimation method, estimates of
the effect of agglomeration are larger for workers who them-
selves have a college degree than for those who do not. Based
on the GMM models that draw upon the expanded instrument
list, the urbanization elasticity is 5.16 percent for the college-
educated and 4.73 percent for individuals with less than a
college degree. Diagnostic tests for the instruments used in
these regressions are similar qualitatively to those from the full-
sample regressions.

19 Stock and Yogo (2005) report that when the first-stage F -statistic is
above 10, weak instrument bias is small.
20 This echoes the idea of absorptive capacity introduced by Cohen and
Levinthal (1990), who found that firms that conducted research and develop-
ment enjoyed greater spillovers from other firms’ research.
21 Marshall (1890) wrote of the “secrets of the trade” being passed from
worker to worker in an industry cluster. Jacobs (1969) wrote of “new work”
being created in diverse cities. In both cases, cities foster knowledge spillovers.
But as emphasized below, knowledge spillovers is just one of the channels by
which agglomeration likely affects productivity.
4.4. Attenuation: urbanization economies

We now turn to the issue of attenuation, beginning with the
relationship between urbanization and log wages. Our goal is to
answer the following sort of question: by how much would an
individual’s wage be affected if a given number of local workers
were relocated to a site closer to the individual’s work place?
Answers to this question will help us to better understand the
rate at which spillovers associated with proximity to nearby em-
ployment attenuate with distance. Estimating the rate at which
agglomeration economies attenuate requires that we consider a
linear shift in the spatial distribution of existing employment,
as with the relocation of 1000 workers from the 25 to 50-mile
ring to the 0 to 5 mile ring, for example. For that reason, in all
of the remaining estimation we focus on log-linear models.

Table 3 presents estimates of the attenuation models for the
full sample as well as for the less-than-college and college sam-
ples. Each of these models includes all four concentric rings
for the agglomeration variables, from 0 to 5 miles, 5 to 25, 25
to 50, and 50 to 100 miles. In each case, we report OLS and
GMM estimates, with the latter based on the expanded set of
instruments.

Two patterns stand out. First, the agglomeration of employ-
ment within 5 miles continues to be positively related to wages.
Focusing initially on the 0 to 5-mile distance band, the OLS and
GMM full sample estimates are quite close. Both estimates im-
ply that a 100,000 increase in full-time workers within 5 miles
(equivalent to roughly the 25/75 spread) is associated with a
wage increase of roughly 2 percent. Thus, the estimates in Ta-
ble 4 continue to be consistent with prior evidence of an urban
wage premium associated with the greater productivity of ur-
ban labor. Analogous results are evident for both the less-than-
college and college samples as well.

The second pattern in Table 3, which we believe to be more
important, is that the effect of employment agglomeration atten-
uates sharply with distance. For the full sample models, both
for the OLS and GMM estimates, the coefficient on the 0 to
5-mile agglomeration variable is four to five times larger than
on the corresponding coefficient on the 5 to 25-mile agglom-
eration variable. Once again, these patterns are echoed in the
less-than-college and college samples. In addition, in all cases
the 0 to 5-mile and 5 to 25-mile coefficients are significant.

Turning to the outer rings (25 to 50 miles and 50 to
100 miles), it is evident that the impact of agglomeration con-
tinues to attenuate, though less so than in the closer-in environ-
ment. All of the outer ring coefficients are small, and in most
cases, several times smaller than the 5 to 25-mile coefficients.
In addition, many of the 25 to 50-mile coefficients and all of the
50 to 100-mile coefficients are not significantly different from
zero. Our reading of these patterns is that most of the spillover
effects of agglomeration occur within five miles although some
spillovers extend out even as far as 50 miles. This finding—
while consistent with classical urban land use theory—is new
to the wage literature.22

22 The closest relevant work is the estimation of wage gradients. This involves
specifying an exogenous city center and estimating the rate of decline in wage
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Table 3
Urbanization attenuation (dependent variable: log of individual wage; t -ratios based on standard errors clustered by MSA)

Full sample Less than college degree College degree or more

OLS GMM OLS GMM OLS GMM

N
um

be
r

of
fu

ll-
tim

e
w

or
ke

rs
ag

e
30

to
65 0 to 5 miles 2.01e–07 2.14e–07 1.62e–07 3.47e–07 2.30e–07 2.29e–07

(7.96) (3.87) (5.21) (3.79) (14.42) (3.87)
5 to 25 miles 3.88e–08 5.20e–08 4.43e–08 5.43e–08 2.96e–08 3.92e–08

(4.07) (2.84) (5.21) (2.41) (2.38) (1.92)
25 to 50 miles 3.01e–08 8.39e–08 2.45e–08 −1.79e–08 3.60e–08 1.32e–07

(4.47) (1.52) (3.33) (−0.44) (4.43) (2.15)
50 to 100 miles −9.01e–09 2.02e–08 −8.78e–09 1.91e–08 −8.69e–09 1.43e–08

(−1.68) (1.42) (−1.78) (1.30) (−1.13) (0.71)

Hansen-J over ID test statistica – 16.041 – 12.634 – 14.031
– (0.0418) – (0.1251) – (0.0810)

Kleibergen–Paap rk weak inst. F -stat.a – 1.142 – 1.078 – 1.945
– – – – – –

Kleibergen–Paap rk underl. F -stat.a – 11.886 – 9.345 – 17.787
– (0.2198) – (0.4060) – (0.0377)

1st stage F -stat. 0–5 mile workersa – 2.12 – 2.19 – 2.27
– (0.0158) – (0.0122) – (0.0096)

1st stage F -stat. 5–25 mile workersa – 4.13 – 3.64 – 4.50
– (0.0000) – (0.0000) – (0.0000)

1st stage F -stat. 25–50 mile workersa – 2.79 – 2.41 – 5.44
– (0.0013) – (0.0055) – (0.0000)

1st stage F -stat. 50–100 mile workersa – 9.02 – 9.76 – 7.56
– (0.0000) – (0.0000) – (0.0000)

Observations 730,281 724,509 461,264 455,708 269,017 264,091
MSA/occupation FE 24,453 18,681 20,764 15,208 14,995 10,069
MSA clusters 297 290 296 286 295 254
R-square within 0.0983 0.0975 0.0786 0.0738 0.0613 0.0587
R-square between 0.3131 – 0.1993 – 0.1259 –
R-square overall 0.2260 – 0.1446 – 0.0897 –

Each model includes additional controls for the worker’s education (less than a High School degree, High School degree, College degree, Masters degree, and more
than a Masters); whether a child is present in the household; whether the worker is married, age and age squared of the worker, race of the worker (white, African
American, Hispanic, Asian, and other), and the number of years the worker has been in the United States (less than 6 years, 6 to 10 years, 11 to 15 years, 16 to
20 years, 20 years or native citizen). GMM instruments include concentric ring measures (0 to 5 miles, 5 to 25 miles, 25 to 50 miles, and 50 to 100 miles) of seismic
hazard, landslide hazard, and percent of area underlain by sedimentary rock).

a Test statistic is cluster-robust.
Turning to the instrument diagnostics in Table 3, it is evident
that the tendency to reject the model specification and espe-
cially the overidentifying restrictions is greater than in Table 2
(based on the Hansen-J test). Similarly, the test statistics for in-
strument strength are smaller than before. Our earlier comments
about the effect of clustering notwithstanding, these diagnostic
tests suggest that the GMM point estimates in Table 3 are less
reliable than those reported in Table 2. On the other hand, the
differencing used to assess attenuation patterns helps to strip
away unobserved heterogeneity as discussed earlier.

4.5. Attenuation: human capital externalities

The models in Tables 2 and 3 restrict the spillover effects
generated by different types of workers to be alike. While this
could be correct, the literature on human capital spillovers sug-

associated with moving away from it. See Ihlanfeldt (1992) and McMillen and
Singell (1992) for particularly careful examples of this sort of analysis. In these
models, firms pay higher wages to downtown labor because it is productive,
while workers are willing to accept lower wages for employment outside the
downtown because commuting costs are lower.
gests otherwise. As noted in Moretti (2004b), there are at least
three potential sources of a social return to education: (i) ed-
ucated people commit fewer crimes, (ii) educated people make
more informed decisions when voting, and (iii) proximity to ed-
ucated workers may enhance productivity. It is the latter effect
that we focus on here. Accordingly, we turn now to the question
of how workers with different levels of education contribute to
agglomeration economies.

Before presenting our results, some background is useful.
Rauch (1993) estimated the impact of the average level of ed-
ucation at the MSA level on both wages and house rents. He
found that a one year increase in the average level of school-
ing was associated with an increase of 3% in wages and 13% in
rents. Acemoglu and Angrist (2000) report that education at the
state level has a positive effect on wages, but one that is small
and insignificantly different from zero.23 Moretti (2004a) finds
that the presence of college graduates has a positive effect on

23 To allow for the possibility that education levels may be endogenous, Ace-
moglu and Angrist (2000) instrument for the state level of education using
compulsory schooling laws.
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wages at the MSA level. Together, these and other studies of
human capital spillovers suggest that the presence of educated
workers generates positive productivity spillovers that exceed
those associated with the presence of low-skilled workers. Si-
mon and Nardinelli (2002) document a positive relationship
between a city’s human capital level and its growth. da Mata et
al. (2007) and Liu (2007) reach parallel conclusions for Brazil
and China.24

Table 4 reports results for a human capital specification. In
these models, we separately estimate the effects of the numbers
of workers with- and without-college degrees within various
distances. In estimating these models we restrict the concen-
tric rings to just the 0 to 5 and 5 to 25-mile segments. We do
this primarily because of evidence from Table 3 that most ef-
fects occur within 25 miles and also to avoid further increase in
the number of endogenous agglomeration variables. As before,
estimates are presented for the full sample, the less-than-college
sample, and the college sample. In addition, as in Table 2, two
sets of GMM estimates are reported for each model, the first
based on the geographically matched instrument list and the
second based on the expanded instrument list.

Two important patterns emerge from this table. First, re-
gardless of the sample composition (e.g. full sample, less-than-
college, or college-or-more), proximity to college educated
workers increases an individual’s wage. This is evident from
the uniformly positive and largely significant coefficients in the
top two rows in each column. Conversely, proximity to less-
than-college workers decreases an individual’s wage, especially
for individuals with a college degree. This is evidenced by the
largely negative coefficients in the bottom two rows in each col-
umn. This pattern is consistent with the spatial concentration of
employment generating two types of spillover effects, one pos-
itive and one negative. On the positive side, agglomeration of
employment enhances productivity for reasons we have already
discussed. On the negative side, the spatial concentration of em-
ployment can increase congestion, lengthen commutes, and in
so doing reduce labor productivity and wages, ceteris paribus.
In principle, both low- and high-skilled workers can contribute
to both types of spillovers. The estimates in Table 3 suggest
that for educated workers, the positive productivity effect out-
weighs the negative congestion effect, but the reverse is true for
workers with less than a college degree.25

The second important pattern in Table 4 is that spillover ef-
fects again attenuate with distance. The attenuation associated
with nearby high-skilled workers is sharp. In the full sample
OLS model, the 0 to 5-mile coefficient for proximity to college
educated workers is 3.5 times larger than the corresponding 5
to 25-mile effect. The degree of attenuation is smaller in the

24 In a paper written simultaneously to ours, Fu (2007) finds attenuation of
human capital externalities (percent educated) in Boston. See Moretti (2004b)
for a more complete survey of this literature.
25 It is worth observing that we find an effect of college educated workers
on other college educated workers. This is different than some wage mod-
els that consider the effect on all workers of the percent college educated. As
shown by Ciccone and Peri (2006), the latter sort of model may confound hu-
man capital spillovers with complementarities in production between more- and
less-educated workers.
GMM models but still clearly present. In many of Table 4 mod-
els, there is also attenuation of the negative effect associated
with the proximity to less-than-college educated workers.

The human capital effects documented in Table 4 are
economically important. For the college-educated sample, if
100,000 college-educated workers are added to the 0 to 5-mile
ring (approximately equivalent to the 25/90 spread in Table 1),
the OLS estimate implies that wages of a college-educated
worker would increase by 12 percent. For the GMM models
with the restricted and expanded instrument lists, the corre-
sponding estimates are 24.5 percent and 16 percent, respec-
tively. The corresponding impacts on workers with less than
a college degree are roughly half these amounts, but they are
clearly still important.

Alternatively, we can also consider the impact of transform-
ing a given number of less-than-college workers into college
educated workers, holding constant the total number of workers
in a concentric ring. Mechanically, this equals the wage effect
of proximity to college-or-more workers minus the effect from
proximity to less-than-college workers. As an example, in the
full sample OLS regressions, transforming 100,000 less-than-
college workers within 5 miles into college-educated would
increase the wage of a typical worker by 11.8 percent. The
corresponding estimates in the restricted and expanded instru-
ment GMM models are 30.4 and 16.7 percent, respectively. In
the college-educated sample, these effects are roughly 50 per-
cent larger in magnitude. This is somewhat stronger than the
result for urbanization economies. For human capital effects,
the college-educated are more sensitive to proximity to human
capital than are the less-than-college educated.

Summarizing, our estimates in Table 4 reveal that proximity
to highly educated workers increases a given worker’s wage,
while proximity to low-skilled workers does the opposite. This
holds regardless of whether the individual in question has a
college degree although the magnitude of the effect is larger
for college educated workers. These effects also generally at-
tenuate sharply with distance, especially for individuals with
a college degree, and especially with respect to proximity to
highly educated workers. These attenuation patterns have im-
portant implications for economic development. Much has been
made in recent years of the importance of human capital for
urban growth (see, for instance Glaeser and Saiz, 2004). Our
results are consistent with this work, but with a twist. We find a
relationship that is geographically localized. Put concretely, the
high human capital in Wall Street contributes much more to the
general prosperity of Manhattan than it does to the Bronx.

4.6. Social versus private returns to education

We have thus far presented estimates only of the social re-
turns to education. In this section, we compare these estimates
to the private returns from education. The latter are presented in
Table 5, which reports estimates of our education coefficients
based on an OLS model that omits the agglomeration variables
but retains all other controls. Consistent with the huge literature
on the private returns to education, on average, each additional
year of schooling adds roughly 10 percent to an individual’s
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College degree or more

OLS GMMa GMMb

1.19e–06 2.45e–06 1.61e–06
(3.49) (3.02) (2.77)
1.59e–07 1.01e–06 −2.19e–07
(1.49) (1.56) (−0.79)
−8.00e–07 −1.58e–06 −1.43e–06
(−2.01) (−2.05) (−2.07)
−6.71e–08 −7.33e–07 2.53e–07
(−0.79) (−1.55) (1.28)

– 2.905 14.46
– (0.2340) (0.0706)
– 0.579 0.924
– – –
– 2.975 11.257
– (0.3955) (0.2585)
– 1.77 2.10
– (0.1058) (0.175)
– 3.53 3.90
– (0.0022) (0.0000)
– 1.90 2.55
– (0.0806) (0.0034)
– 3.49 4.67
– (0.0025) (0.0000)

269,017 264,091 264,091
14,995 10,069 10,069
295 254 254
0.0615 0.0611 0.0611
0.1219 – –
0.0862 – –

ore than a Masters); whether a child is present in the
number of years the worker has been in the United

entary rock.
percent of area underlain by sedimentary rock.
Table 4
Human capital attenuation (dependent variable: log of individual wage; t -ratios based on standard errors clustered by MSA)

Full sample Less than college degree

OLS GMMa GMMb OLS GMMa GMMb

Number of full-time 0 to 5 miles 7.80e–07 1.99e–06 1.10e–06 4.79e–07 1.36e–06 7.10e–07
college-or-more (2.73) (3.46) (2.60) (1.75) (2.61) (1.79)
workers age 30–65 5 to 25 miles 2.20e–07 1.16e–06 1.04e–07 2.57e–07 1.20e–06 5.68e–07

(2.52) (2.56) (0.37) (3.27) (2.33) (1.71)
Number of full-time 0 to 5 miles −3.97e–07 −1.05e–06 −5.74e–07 −1.34e–07 −3.60e–07 2.90e–07
less-than-college (−1.12) (−1.92) (−1.07) (−0.38) (−0.48) (0.54)
workers age 30–65 5 to 25 miles −1.04e–07 −7.73e–07 1.85e–08 −1.26e–07 −7.81e–07 −3.36e–07

(−1.54) (−2.40) (0.09) (−2.23) (−2.06) (−1.40)

Hansen-J over ID test statisticc – 1.844 24.761 – 1.206 13.83
– (0.3978) (0.0017) – (0.5471) (0.0863)

Kleibergen–Paap rk weak inst. F -stat.c – 0.441 0.860 – 0.340 1.077
– – – – – –

Kleibergen–Paap rk underl. F -stat.c – 2.439 6.807 – 1.962 9.627
– (0.4865) (0.6573) – (0.5803) (0.3815)

1st stage F -stat. coll. + 0–5 mile workersc – 1.64 1.86 – 1.52 2.06
– (0.1346) (0.0386) – (0.1706) (0.0206)

1st stage F -stat. coll. + 5–25 mile workersc – 3.52 4.07 – 3.84 3.71
– (0.0023) (0.0000) – (0.0011) (0.0000)

1st stage F -stat. LT-Coll. 0–5 mile workersc – 1.76 2.42 – 1.52 2.37
– (0.1061) (0.0053) – (0.1703) (0.0064)

1st stage F -stat. LT-Coll. 5–25 mile workersc – 3.81 4.17 – 4.06 3.62
– (0.0011) (0.0000) – (0.0006) (0.0000)

Observations 730,281 724,509 724,509 461,264 455,708 455,708
MSA/occupation FE 24,453 18,681 18,681 20,764 15,208 15,208
MSA clusters 297 290 290 296 286 286
R-square within 0.0983 0.0948 0.0972 0.0786 0.0742 0.0730
R-square between 0.3059 – – 0.1888 – –
R-square overall 0.2228 – – 0.1408 – –

Each model includes additional controls for the worker’s education (less than a High School degree, High School degree, College degree, Masters degree, and m
household; whether the worker is married, age and age squared of the worker, race of the worker (white, African American, Hispanic, Asian, and other), and the
States (less than 6 years, 6 to 10 years, 11 to 15 years, 16 to 20 years, 20 years or native citizen).

a GMM instruments include concentric ring measures 0 to 5 miles and 5 to 25 miles of seismic hazard, landslide hazard, and percent of area underlain by sedim
b GMM instruments include concentric ring measures (0 to 5 miles, 5 to 25 miles, 25 to 50 miles, and 50 to 100 miles) of seismic hazard, landslide hazard, and
c Test statistic is cluster-robust.
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Table 5
Private returns to education (dependent variable: log of individual wage;
t -ratios based on robust standard errors)

Coefficient

High school degree 0.1141
(44.20)

Some college 0.1902
(70.98)

College degree 0.3964
(125.40)

Masters degree 0.5111
(130.16)

Professional or PhD degree 0.5636
(94.84)

Observations 750,759
MSA/occupation FE 26,018
R-square within 0.0946
R-square between 0.2826
R-square overall 0.2079
Root MSE 0.5910

The model excludes the agglomeration variables but includes additional con-
trols for whether a child is present in the household; whether the worker is
married, age and age squared of the worker, race of the worker (white, African
American, Hispanic, Asian, and other), and the number of years the worker has
been in the United States (less than 6 years, 6 to 10 years, 11 to 15 years, 16 to
20 years, 20 years or native citizen).

wage; the incremental contribution of a college degree beyond
that of a high school degree is roughly 30 percent.

Compared to these benchmarks, our estimates suggest that
the social returns to education are large. Based on the es-
timates in Table 4, adding 50,000 college-educated workers
within 5 miles would increase a college-educated individual’s
wage by roughly 6 to 12 percent depending on whether one
focuses on the OLS or GMM estimates. Transforming 50,000
less-than-college workers within 5 miles into college-educated
would increase the wage of a typical worker by roughly 6 to
15 percent depending on the model specification. These effects
are comparable to 20 to 50 percent of the incremental private re-
turns associated with obtaining a college degree following high
school. Thus, while the private returns to education predomi-
nate as might be expected, the social returns to education are
also important.26

5. Conclusions

This paper has considered the attenuation of agglomera-
tion economies and human capital spillovers. The paper obtains
strong evidence of an urban wage premium: the elasticity of
wage with respect to the number of workers within five miles
is roughly 4.5 percent, close to estimated elasticities of wage
with respect to city population found in prior work. Completely
new to this paper, further analysis reveals that the positive effect
of agglomeration is really due to the presence of human capi-

26 It should be emphasized that our estimates understate the social returns to
human capital by focusing only on productivity spillovers. As noted earlier,
previous studies have argued that educated people also commit fewer crimes
and are more informed voters.
tal. Proximity to college educated workers is shown to enhance
wages, while proximity to less-than-college workers has the
opposite effect. These effects impact the wages of both college-
educated workers and those without college. These effects also
attenuate sharply with distance.

The magnitude of these effects is economically important.
Endowing 50,000 less-than-college workers within five miles
with college-or-more degrees is associated with an increase a
given college-educated individual’s wage of 6 to 15 percent de-
pending on the model specification. By comparison, the private
return from one additional year of schooling is roughly 10 per-
cent, while the private return from obtaining a college degree
after high school is roughly 30 percent. Endowing the work-
force 5 to 25 miles away with additional education also would
increase a given individual’s wage, but by an amount several
times smaller than if the shift in workforce composition took
place within five miles.

The paper’s attenuation results are important for several
reasons. The evidence that productivity spillovers attenuate
sharply with distance suggests that the concentration of eco-
nomic activity continues to be valuable. This concentration
could take the form of traditional downtowns or newer “edge
cities” (Garreau, 1991). The results are thus at least somewhat
favorable to traditional downtowns and also to more concen-
trated forms of development outside of downtowns. Regarding
sprawl, the result that spatial concentration matters is consis-
tent with the result in Burchfield et al. (2006) that relatively
little growth in urban footprints takes place far from existing
development.

A few final comments on robustness are also in order. Our
estimates of the elasticity of wage with respect to agglomeration
within five miles are particularly robust. In this case, diagnostic
tests tend to support the validity of our geologic instruments,
even with a very aggressive form of clustering imposed on
the model errors (at the MSA level). When focusing on the
impact of human capital spillovers and attenuation, we implic-
itly difference estimates, in some cases by up three different
dimensions (by MSA/occupation, by proximity to highly edu-
cated versus low-skilled labor, and by adjacent distance bands
or rings). This differencing helps to sweep out unobserved ef-
fects and increases the credibility of the OLS estimates. These
models also demand more of the data. Possibly for that reason,
the instrument diagnostic tests largely do not support our geo-
logic instruments in the more demanding models. On the other
hand, the qualitative and often quantitative nature of the coeffi-
cient estimates is largely robust to estimation method (e.g. OLS
versus GMM, and also the set of instruments used), as are the
coefficient t-ratios. On balance, therefore, we believe that the
key findings in this paper are robust.
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Appendix A. Summary statistics for geologic variables

Table A1
Sample percentiles for concentric ring geologic variables

Of census tracts Sample percentile

10th 25th 50th 75th 90th

Seismic hazard: ave. ind. within 0–5 mi. 0.99 2.00 3.97 5.67 28.51
Seismic hazard: ave. ind. within 5–25 mi. 0.99 1.99 3.86 5.42 23.84
Seismic hazard: ave. ind. within 25–50 mi. 1.06 1.99 3.72 4.67 25.64
Seismic hazard: ave. ind. within 50–100 mi. 1.21 2.00 3.57 4.31 28.09
Landslide hazard: ave. ind. within 0–5 mi. 0.97 0.99 1.04 1.49 1.91
Landslide hazard: ave. ind. within 5–25 mi. 0.99 1.00 1.18 1.29 1.68
Landslide hazard: ave. ind. within 25–50 mi. 0.99 1.01 1.14 1.27 1.57
Landslide hazard: ave. ind. within 50–100 mi. 1.00 1.06 1.22 1.34 1.53
% underl. by sed. rock within 0–5 mi. 0.01 0.27 0.85 0.99 1.00
% underl. by sed. rock within 5–25 mi. 0.13 0.40 0.72 0.99 1.00
% underl. by sed. rock within 25–50 mi. 0.20 0.54 0.67 0.98 1.00
% underl. by sed. rock within 50–100 mi. 0.25 0.55 0.82 0.95 1.00

The sample is restricted to individuals who reside in MSAs and who work in
“small” PWPUMAs. “Small” in this context means that a 5-mile ring drawn
around the geographic centroid of the PWPUMA extends beyond the boundary
of the own-PWPUMA.

Table A2
Complete results for Table 2 full sample OLS elasticity regression (dependent
variable: log of individual wage; t -ratios based on cluster-robust standard er-
rors)

Coefficient t-ratio

Log No. full-time workers 30–65 within 5 miles 0.03048 9.38
High school degree 0.11434 20.27
Some college 0.18919 24.31
College degree 0.39247 45.91
Masters degree 0.50589 40.34
Professional or PhD degree 0.55881 46.55
Child under 18 present 0.00771 1.97
Married 0.17266 43.54
Age of household head 0.04636 28.82
Age squared −0.00043 −26.78
African American −0.13302 −26.84
Asian −0.14596 −7.29
Hispanic −0.12238 −16.48
Other −0.15747 −12.60
No. of years in US 6 to 10 0.01513 1.44
No. of years in US 11 to 15 0.07830 8.39
No. of years in US 16 to 20 0.10723 15.39
No. of years in US 20 or more or native citizen 0.20190 17.51

Observations 730,281
MSA/occupation FE 24,453
MSA clusters 297
R-square within 0.0974
R-square between 0.3051
R-square overall 0.2209
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